VS Code用AI写代码:Codeium插件

2023-12-20 06:10
文章标签 代码 ai vs code 插件 codeium

本文主要是介绍VS Code用AI写代码:Codeium插件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • Codeium
    • chat
    • 代码生成

Codeium

Codeium是基于边缘计算的代码AI工具,提供超过70种编程语言的代码补全、对话、搜索等功能,相当霸道。

在插件栏搜索到Codeium之后,需要科学上网安装,安装完成后会提示注册。注册之后,会弹出一个Token页面,并提供一组密钥,然后回到VS Code,按下Ctrl+Shift+P,输入Codeium:Provi...,并将复制的密钥填入。当VS Code下面出现欢迎字样时,就说明可以正常使用了。

同时,点开左侧的{...}图标,也会看到CHATSEARCH中出现了内容,我们就可以跟他对话了。而且具体使用时,并不需要科学上网。

chat

Codeium是听得懂中文的,比如我问

有没有什么好的激光雷达检校算法?

他的回答如下,可以说十分靠谱了

有几种常用的激光雷达校准算法可以考虑使用:
点云匹配算法:这种算法使用激光雷达采集到的点云数据进行匹配,将多个扫描周期的点云数据对齐,从而校准激光雷达的姿态和内外参。
地面平面提取算法:这种算法通过分析激光雷达扫描到的点云数据,提取地面平面信息,并利用地面平面的几何特征进行激光雷达的姿态校准。
基于特征点的匹配算法:这种算法通过提取激光雷达扫描到的点云数据中的特征点(例如,角点、边缘点等),并利用这些特征点进行匹配,从而实现激光雷达的校准。
非线性优化算法:这种算法通过建立激光雷达的数学模型,并利用非线性优化方法(如Levenberg-Marquardt算法)来最小化模型与实际观测数据之间的差异,从而实现激光雷达的校准。
这些算法都有各自的优缺点,选择适合你特定需求和数据情况的算法是很重要的。同时,还可以考虑使用开源的激光雷达校准库,例如libpointmatcher和lidar-odom等,它们提供了一些常用的激光雷达校准算法的实现和工具。

代码生成

新建一个test.py文件,在注释中写下想要做的事情,然后Codeium会自动生成相关的代码,还挺像模像样的,唯一美中不足之处在于,他并不会自动导入相应的包。

# 导入科学计算包
import numpy as np# 创建一个函数,可以根据字符串的长度返回随机字符串
def random_str(length):return ''.join(random.sample(string.ascii_letters + string.digits, length))# 写一个斐波那契数列函数
def fib(n):a, b = 0, 1for i in range(n):a, b = b, a+breturn a

但接下来让他写一个递归的斐波那契数列,就稍微有些无语了,给了个内存爆炸写法

# 写一个递归斐波那契数列函数
def fib2(n):if n == 0:return 0elif n == 1:return 1else:return fib2(n-1) + fib2(n-2)

而且复杂的代码任务可能还是比较拉跨的

# 写一个卷积神经网络
class CNN:def __init__(self):pass# 创建粒子群算法
class ParticleSwarm:def __init__(self):pass

但是,如果用chat来生成,那么还是有点意思滴

在这里插入图片描述

最终代码如下

import randomclass Particle:def __init__(self, position, velocity):self.position = positionself.velocity = velocityself.best_position = positionself.best_fitness = float('inf')def fitness_function(position):# 定义适应度函数,根据具体问题进行定义return sum(position)  # 以求和为例def particle_swarm_optimization(population_size, num_dimensions, max_iterations):# 初始化粒子群swarm = []for _ in range(population_size):position = [random.uniform(-5, 5) for _ in range(num_dimensions)]velocity = [random.uniform(-1, 1) for _ in range(num_dimensions)]swarm.append(Particle(position, velocity))# 寻找全局最优解global_best_position = Noneglobal_best_fitness = float('inf')for _ in range(max_iterations):for particle in swarm:# 更新粒子速度for i in range(num_dimensions):inertia = 0.5  # 惯性权重cognitive_weight = 1.0  # 学习因子(针对个体最优)social_weight = 1.0  # 学习因子(针对全局最优)r1 = random.random()r2 = random.random()cognitive_component = cognitive_weight * r1 * (particle.best_position[i] - particle.position[i])social_component = social_weight * r2 * (global_best_position[i] - particle.position[i])particle.velocity[i] = inertia * particle.velocity[i] + cognitive_component + social_component# 更新粒子位置for i in range(num_dimensions):particle.position[i] += particle.velocity[i]# 计算适应度fitness = fitness_function(particle.position)# 更新个体最优位置和全局最优位置if fitness < particle.best_fitness:particle.best_position = particle.positionparticle.best_fitness = fitnessif fitness < global_best_fitness:global_best_position = particle.positionglobal_best_fitness = fitnessreturn global_best_position, global_best_fitness# 示例用法
population_size = 20
num_dimensions = 2
max_iterations = 100best_position, best_fitness = particle_swarm_optimization(population_size, num_dimensions, max_iterations)
print("Best Position:", best_position)
print("Best Fitness:", best_fitness)

当然,在实际使用中,不幸报错了。

这篇关于VS Code用AI写代码:Codeium插件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/514994

相关文章

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

Python实现文件下载、Cookie以及重定向的方法代码

《Python实现文件下载、Cookie以及重定向的方法代码》本文主要介绍了如何使用Python的requests模块进行网络请求操作,涵盖了从文件下载、Cookie处理到重定向与历史请求等多个方面,... 目录前言一、下载网络文件(一)基本步骤(二)分段下载大文件(三)常见问题二、requests模块处理

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是