[LeetCode]动态规划,一招团灭最小路径问题

2023-12-19 14:32

本文主要是介绍[LeetCode]动态规划,一招团灭最小路径问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划是求解“最小路径”的常用方法之一,LeetCode上关于“最小路径”的题目如下:

  • 64.最小路径和:https://leetcode-cn.com/problems/minimum-path-sum/
  • 120.三角形最小路径和:https://leetcode-cn.com/problems/triangle/
  • 931.下降路径最小和:https://leetcode-cn.com/problems/minimum-falling-path-sum/
  • 1289.下降路径最小和Ⅱ:https://leetcode-cn.com/problems/minimum-falling-path-sum-ii/

关于动态规划,可以访问Jungle之前的博客:

  • [LeetCode]动态规划及LeetCode题解分析
  • [LeetCode]动态规划LeetCode[简单]题全解
  • [LeetCode]动态规划之打家劫舍ⅠⅡⅢ
  • [LeetCode]动态规划,一举歼灭“股票买卖的最佳时机“问题!

本文,Jungle将采用动态规划,一举解决上述问题。

1.思路分析

我们以64.最小路径和为例,分析采用动态规划求解该类问题的基本思路。题目描述如下:

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

 在之前的文章我们已经提到过,使用动态规划求解问题的三大步骤,这里我们也将遵循这三大步骤:

(1)明确数组元素代表的含义

题目中是给定二维地图,我们使用二维数组dp[][]。那么对于数组元素dp[i][j]代表什么呢?——机器人走到网格(i,j)时的最小路径值。

(2)寻找递推关系,务必考虑特殊情况下的递推关系

题目中明确告诉“机器人每次只能向下或者向右移动一步”,因此,机器人走到(i,j),有可能是从(i-1,j)向下走,也可能是从(i,j-1)向右走一步。到底该走哪一步呢?因为要求路径和最小,所以取决于dp[i-1][j]和dp[i][j-1]的大小。也就是说,dp[i][j]=grid[i][j]+min(dp[i-1][j]+dp[i][j-1]).

这里有没有特殊情况呢?显然有的,那就是机器人位于网格边界时(网格上面第一横排和左边第一竖排),上述递推关系需要修改:

  • 当机器人位于网格第一横排时,i=0,dp[0][j]只能从dp[0][j-1]向右移动一步得到,即dp[0][j] = grid[0][j]+dp[0][j-1];
  • 当机器人位于网格第一竖排时,j=0,dp[i][0]只能从dp[i-1][0]向下移动一步得到,即dp[i][0] =grid[i-1][0]+dp[i-1][0];

(3)数组初始化

机器人最初位于网格左上角,dp[0][0]是唯一开始点,所以dp[0][0] = grid[0][0].

(4)代码

本题不必重新声明二维数组dp,可以直接利用原有二维数组。

int minPathSum(vector<vector<int>>& grid) {int i = 0, j = 0;for (i = 0; i<grid.size(); i++){for (j = 0; j<grid[0].size(); j++){if (i == 0 && j == 0){continue;}else if (i == 0){grid[i][j] += grid[i][j - 1];}else if (j == 0){grid[i][j] += grid[i - 1][j];}else{grid[i][j] = grid[i][j] + (grid[i][j - 1]<grid[i - 1][j] ? grid[i][j - 1] : grid[i - 1][j]);}}}return grid[grid.size() - 1][grid[0].size() - 1];
}

2.LeetCode题解

64. 最小路径和

见上述分析示例。

120. 三角形最小路径和

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

例如,给定三角形:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

这题把矩形换成了三角形。有什么区别?总体上思路是一样的,区别在于边界条件。

(1)明确数组元素代表的含义

dp[i][j]——走到网格(i,j)时的最小路径值。

(2)寻找递推关系,务必考虑特殊情况下的递推关系

题目中要求“每一步只能移动到下一行中相邻的结点上”,因此,走到(i,j),有可能是从(i-1,j-1)向下走,也可能是从(i-1,j)向下走。到底该走哪一步呢?因为要求路径和最小,所以取决于dp[i-1][j]和dp[i][j-1]的大小。也就是说,dp[i][j]=triangle[i][j]+min(dp[i-1][j]+dp[i-1][j]).

这里同样有特殊情况——位于网格边界时。比上一题更加复杂的是,这道题有三角形顶点三角形两腰上三个边界条件需要考虑,上述递推关系需要修改:

  • 当位于三角形左腰上时,即j=0,dp[i][0]只能从dp[i-1][0]向下移动一步得到,即dp[i][j] = triangle[i][j] + dp[i - 1][j]
  • 当位于三角形右腰上时,即i=j,dp[i][j]只能从dp[i-1][j-1]向下移动一步得到,即dp[i][j] = triangle[i][j] + dp[i - 1][j - 1]

同时,因为这一题目是要求走到底部,而不是固定走到最右下角的位置。所以定义变量min保存最小值。

(3)数组初始化

最初位于三角形顶点,dp[0][0]是唯一开始点,所以dp[0][0] = triangle[0][0].

(4)代码

int minimumTotal(vector<vector<int>>& triangle) {int col = triangle.size();if (col == 0){return 0;}if (col == 1){return triangle[0][0];}int **dp = new int*[col];for (int i = 0; i<col; i++){dp[i] = new int[i + 1];}dp[0][0] = triangle[0][0];int min = 0;for (int i = 1; i<col; i++){for (int j = 0; j<triangle[i].size(); j++){if (j == 0){dp[i][j] = triangle[i][j] + dp[i - 1][j];min = dp[i][j];}else if (j == i){dp[i][j] = triangle[i][j] + dp[i - 1][j - 1];}else{dp[i][j] = triangle[i][j] + (dp[i - 1][j - 1] < dp[i - 1][j] ? dp[i - 1][j - 1] : dp[i - 1][j]);}if (dp[i][j]<min){min = dp[i][j];}}}return min;
}

931. 下降路径最小和

给定一个方形整数数组 A,我们想要得到通过 A 的下降路径的最小和。

下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列。

 

示例:

输入:[[1,2,3],[4,5,6],[7,8,9]]
输出:12
解释:
可能的下降路径有:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
和最小的下降路径是 [1,4,7],所以答案是 12。

提示:

1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100

(1)明确数组元素代表的含义

dp[i][j]——走到网格(i,j)时的最小路径和。

(2)寻找递推关系,务必考虑特殊情况下的递推关系

题目中要求“从每一行中选择一个元素”并且“在下一行选择的元素和当前行所选元素最多相隔一列”,因此,走到(i,j),可能是从(i-1,j-1)、(i-1,j)或者(i-1,j+1)三个位置出发达到。到底该走哪一步呢?因为要求路径和最小,所以取决于dp[i-1][j-1]、dp[i-1][j]和dp[i-1][j+1]的大小,即dp[i][j] = A[i][j]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1])).

特殊情况——位于网格边界时:

  • 当位于左边界时,即j=0,dp[i][0]只能从dp[i-1][j]或dp[i-1][j+1]出发达到,即dp[i][j] = A[i][j]+min(dp[i-1][j],dp[i-1][j+1])
  • 当位于右边界时,即j=len-1,dp[i][j]只能从dp[i-1][j-1]或dp[i-1][j]出发达到,即dp[i][j] = A[i][j]+min(dp[i-1][j-1],dp[i-1][j])​​​​​​​

同时,因为这一题目是要求走到底部,而不是固定走到最右下角的位置。所以定义变量Min保存最小值。

(3)数组初始化

题目要求,“下降路径可以从第一行中的任何元素开始”,所以dp[0][j] = A[0][j]

(4)代码

int minFallingPathSum(vector<vector<int>>& A) {int row = A.size();int col = A[0].size();if (row == 0 || col == 0){return 0;}if (row == 1){sort(A[0].begin(), A[0].end());return A[0][0];}vector<vector<int>>dp(row, vector<int>(col, 0));int Min = 0;for (int j = 0; j<col; j++){dp[0][j] = A[0][j];}for (int i = 1; i<row; i++){for (int j = 0; j<col; j++){if (j == 0){dp[i][j] = A[i][j] + min(dp[i - 1][j], dp[i - 1][j + 1]);}else if (j == col - 1){dp[i][j] = A[i][j] + min(dp[i - 1][j - 1], dp[i - 1][j]);}else{dp[i][j] = A[i][j] + min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i - 1][j + 1]));}if (i == row - 1){if (j == 0){Min = dp[i][0];}if (dp[i][j]<Min){Min = dp[i][j];}}}}return Min;
}

1289. 下降路径最小和 II

给你一个整数方阵 arr ,定义「非零偏移下降路径」为:从 arr 数组中的每一行选择一个数字,且按顺序选出来的数字中,相邻数字不在原数组的同一列。

请你返回非零偏移下降路径数字和的最小值。

 

示例 1:

输入:arr = [[1,2,3],[4,5,6],[7,8,9]]
输出:13
解释:
所有非零偏移下降路径包括:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
下降路径中数字和最小的是 [1,5,7] ,所以答案是 13 。
 

提示:

1 <= arr.length == arr[i].length <= 200
-99 <= arr[i][j] <= 99

这一题与上一题的区别在于,“按顺序选出来的数字中,相邻数字不在原数组的同一列”。这道题标记为“困难”,难吗?不难。

(1)明确数组元素代表的含义

dp[i][j]——走到网格(i,j)时的最小路径和。

(2)寻找递推关系,务必考虑特殊情况下的递推关系

题目中要求“从每一行中选择一个元素”并且“相邻数字不在原数组的同一列”,因此,走到(i,j),是由除了(i-1,j)之外的其他网格出发达到。要求路径最小,因此需要找到在(i,j)上一步的最小路径值。所以,dp[i][j] = arr[i][j]+min_dp(dp,i-1,j),其中min_dp是一个函数,返回第i-1行中的最小路径值,第三个参数代表当前的j,所以在查找第i-1行中的最小路径值时,要排除掉第j个位置的路径值。

同时,因为这一题目是要求走到底部,而不是固定走到最右下角的位置。所以定义变量res保存最小值。

(3)数组初始化

题目要求,“下降路径可以从第一行中的任何元素开始”,所以dp[0][j] = arr[0][j]

(4)代码

int min_dp(vector<vector<int>>& dp, int i, int not_j){int Min = 201;for (int jj = 0; jj<dp.size(); jj++){if (jj == not_j){continue;}if (dp[i][jj]<Min){Min = dp[i][jj];}}return Min;
}
int minFallingPathSum(vector<vector<int>>& arr) {int len = arr.size();if (len == 0){return 0;}if (len == 1){return arr[0][0];}vector<vector<int>>dp(len, vector<int>(len, 0));int res;for (int k = 0; k<len; k++){dp[0][k] = arr[0][k];}for (int i = 1; i<len; i++){for (int j = 0; j<len; j++){dp[i][j] = arr[i][j] + min_dp(dp, i - 1, j);if (i == len - 1){if (j == 0){res = dp[i][j];}else if (dp[i][j]<res){res = dp[i][j];}}}}return res;
}

欢迎在评论区交流!

原创不易,谢谢点赞! 


欢迎关注知乎专栏:Jungle是一个用Qt的工业Robot

欢迎关注Jungle的微信公众号:Jungle笔记

 

这篇关于[LeetCode]动态规划,一招团灭最小路径问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/512552

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu