FATE —— 二.2.3 Homo-NN自定义损失函数

2023-12-19 11:10

本文主要是介绍FATE —— 二.2.3 Homo-NN自定义损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

当Pytorch的内置损失功能不能满足您的使用需求时,您可以使用自定义损失来训练您的模型

MNIST示例的一个小问题

您可能会注意到,在上一个教程“自定义数据集”中的MNIST示例中,分类器输出分数是Softmax函数的结果,我们使用torch内置的CrossEntropyLoss来计算损失。然而,它在文档(CrossEntropyLoss Doc)中显示,输入预期包含每个类的未规范化逻辑,也就是说,在该示例中,我们计算Softmax两次。为了解决这个问题,我们可以使用定制的CrossEntropyLoss。

开发自定义丢失

Customized Loss是torch.nn.Module的子类并实现forward函数的类。在FATE训练器中,损失函数将传递两个参数:预测分数和标签(loss_fn(pred,loss)),因此当您使用FATE的训练器时,损失函数需要将两个参数作为输入(预测分数&标签)。然而,如果您使用的是自己的培训师,并且定义了自己的培训流程,那么您不受如何使用损失函数的限制。

一种新的交叉熵损失

在这里,我们实现了一个新的CrossEntropyLoss,它跳过了softmax计算。我们可以使用jupyter接口save_to_rate将代码更新为federatedml.nn.loss(名为ce.py),当然,您可以手动将代码文件复制到目录中。

import torch as t
from federatedml.util import consts
from torch.nn.functional import one_hotdef cross_entropy(p2, p1, reduction='mean'):p2 = p2 + consts.FLOAT_ZERO  # to avoid nanassert p2.shape == p1.shapeif reduction == 'sum':return -t.sum(p1 * t.log(p2))elif reduction == 'mean':return -t.mean(t.sum(p1 * t.log(p2), dim=1))elif reduction == 'none':return -t.sum(p1 * t.log(p2), dim=1)else:raise ValueError('unknown reduction')class CrossEntropyLoss(t.nn.Module):"""A CrossEntropy Loss that will not compute Softmax"""def __init__(self, reduction='mean'):super(CrossEntropyLoss, self).__init__()self.reduction = reductiondef forward(self, pred, label):one_hot_label = one_hot(label.flatten())loss_ = cross_entropy(pred, one_hot_label, self.reduction)return loss_

训练新的损失

导入组件
import torch as t
from torch import nn
from pipeline import fate_torch_hook
from pipeline.component import HomoNN
from pipeline.backend.pipeline import PipeLine
from pipeline.component import Reader, Evaluation, DataTransform
from pipeline.interface import Data, Modelt = fate_torch_hook(t)
将数据路径绑定到名称和命名空间
import os
# bind data path to name & namespace
# fate_project_path = os.path.abspath('../')
arbiter = 10000
host = 10000
guest = 9999
pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host,arbiter=arbiter)data_0 = {"name": "mnist_guest", "namespace": "experiment"}
data_1 = {"name": "mnist_host", "namespace": "experiment"}
# 路径根据自己得文件位置及名称进行调整,这里以FATE 1.10.0 版本为例
data_path_0 = '/mnt/hgfs/mnist/'
data_path_1 = '/mnt/hgfs/mnist/'
pipeline.bind_table(name=data_0['name'], namespace=data_0['namespace'], path=data_path_0)
pipeline.bind_table(name=data_1['name'], namespace=data_1['namespace'], path=data_path_1)

{'namespace': 'experiment', 'table_name': 'mnist_host'}

reader_0 = Reader(name="reader_0")
reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=data_0)
reader_0.get_party_instance(role='host', party_id=host).component_param(table=data_1)
使用CustLoss

在fate_torch_hook之后,我们可以使用t.nn.CustLoss指定您自己的损失。我们将在参数中指定模块名和类名,后面是损失类的初始化参数。初始化参数必须是JSON可序列化的,否则无法提交此PipeLine。

from pipeline.component.homo_nn import TrainerParam, DatasetParam  # Interface# your loss class
loss = t.nn.CustLoss(loss_module_name='cross_entropy', class_name='CrossEntropyLoss', reduction='mean')# our simple classification model:
model = t.nn.Sequential(t.nn.Linear(784, 32),t.nn.ReLU(),t.nn.Linear(32, 10),t.nn.Softmax(dim=1)
)nn_component = HomoNN(name='nn_0',model=model, # modelloss=loss,  # lossoptimizer=t.optim.Adam(model.parameters(), lr=0.01), # optimizerdataset=DatasetParam(dataset_name='mnist_dataset', flatten_feature=True),  # datasettrainer=TrainerParam(trainer_name='fedavg_trainer', epochs=2, batch_size=1024, validation_freqs=1),torch_seed=100 # random seed)
pipeline.add_component(reader_0)
pipeline.add_component(nn_component, data=Data(train_data=reader_0.output.data))
pipeline.add_component(Evaluation(name='eval_0', eval_type='multi'), data=Data(data=nn_component.output.data))pipeline.compile()
pipeline.fit()
pipeline.get_component('nn_0').get_output_data()
pipeline.get_component('nn_0').get_summary()

{'best_epoch': 1,

'loss_history': [3.472281552891043, 2.6957144274613256],

'metrics_summary': {'train': {'accuracy': [0.41711229946524064,

0.6348357524828113],

'precision': [0.5812903622442052, 0.7334376862468294],

'recall': [0.39894927536231883, 0.6243379446640317]}},

'need_stop': False}

这篇关于FATE —— 二.2.3 Homo-NN自定义损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511945

相关文章

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(