路透社新闻分类(多分类)--python深度学习

2023-12-19 09:10

本文主要是介绍路透社新闻分类(多分类)--python深度学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import keras
keras.__version__

‘2.0.8’

路透社新闻分类(多分类)

多分类任务(Keras内置数据集)

路透社数据集,它包含许多短新闻及其对应的主题,由路透社在 1986 年发布。它是一个简单的、广泛使用的文本分类数据集。

  • 包括 46 个不同的主题

1.数据导入

from keras.datasets import reuters(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)

IMDB 数据集一样,参数 num_words=10000 将数据限定为前 10 000 个最常出现的单词

len(train_data)

8982

len(test_data)

2246

# 与 IMDB 评论一样,每个样本都是一个整数列表(表示单词索引)
train_data[10]
# 样本对应的标签是一个 0~45 范围内的整数
train_labels[10]

3

将索引解码为新闻文本:索引减去了 3,因为 0、1、2 是为“padding”(填充)、“start of
sequence”(序列开始)、“unknown”(未知词)分别保留的索引

word_index = reuters.get_word_index()
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
decoded_newswire = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
decoded_newswire

‘? ? ? said as a result of its december acquisition of space co it expects earnings per share in 1987 of 1 15 to 1 30 dlrs per share up from 70 cts in 1986 the company said pretax net should rise to nine to 10 mln dlrs from six mln dlrs in 1986 and rental operation revenues to 19 to 22 mln dlrs from 12 5 mln dlrs it said cash flow per share this year should be 2 50 to three dlrs reuter 3’

2.数据预处理

# seasons = ['Spring', 'Summer', 'Fall', 'Winter']
# list(enumerate(seasons))

[(0, ‘Spring’), (1, ‘Summer’), (2, ‘Fall’), (3, ‘Winter’)]

(1)数据向量化(One-hot编码)

import numpy as npdef vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1.return results# 训练数据向量化
x_train = vectorize_sequences(train_data)
# 测试数据向量化
x_test = vectorize_sequences(test_data)

array([[0., 1., 0., …, 0., 0., 0.],
[0., 0., 0., …, 0., 0., 0.],
[0., 0., 0., …, 0., 0., 0.]])

(2)标签向量化(One-hot编码)

# 方法一:自定义函数
def to_one_hot(labels, dimension=46):results = np.zeros((len(labels), dimension))for i, label in enumerate(labels):results[i, label] = 1.return results# 训练标签
one_hot_train_labels = to_one_hot(train_labels)
# 测试标签
one_hot_test_labels = to_one_hot(test_labels)
# 方法二:Keras 内置方法
from keras.utils.np_utils import to_categoricalone_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

3. 模型构建

对于前面用过的 Dense的堆叠,每层只能访问上一层输出的信息。如果某一层丢失了与
分类问题相关的一些信息,那么这些信息无法被后面的层找回,每一层都可能成为
信息瓶颈。

16 维空间可能太小了,无法学会区分 46 个不同的类别,故设置64 个单元。

# 1.模型定义
from keras import models
from keras import layersmodel = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

在这里插入图片描述

# 2.模型编译
model.compile(optimizer='rmsprop',loss='categorical_c![在这里插入图片描述](https://img-blog.csdnimg.cn/649dd0dcc3e74f76b4cbefbac741b99d.png)
rossentropy',   # 分类交叉熵metrics=['accuracy'])

4. 验证

在训练数据中留出 1000 个样本作为验证集

x_val = x_train[:1000]
partial_x_train = x_train[1000:]y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
# 3.模型训练(fit)
history = model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=512,validation_data=(x_val, y_val))
history_dict = history.history
history_dict.keys()

dict_keys([‘loss’, ‘accuracy’, ‘val_loss’, ‘val_accuracy’])

绘制损失曲线和精度曲线

import matplotlib.pyplot as pltloss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1, len(loss) + 1)plt.plot(epochs, loss, 'bo', label='Training loss')    # 'bo' 表示蓝色圆点
plt.plot(epochs, val_loss, 'b', label='Validation loss')    # 'b' 表示蓝色实线
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2pigEjIX-1685261494842)(output_29_0.png)]

plt.clf()   # clear figureacc = history.history['accuracy']
val_acc = history.history['val_accuracy']plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TnhuFmlF-1685261494842)(output_30_0.png)]

网络在训练 9 轮后开始过拟合,重新训练网络

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=8,batch_size=512,validation_data=(x_val, y_val))
results = model.evaluate(x_test, one_hot_test_labels)
results

[0.9732478260993958, 0.7867319583892822]

如果是一个完全随机的分类器哈哈哈

import copytest_labels_copy = copy.copy(test_labels)
np.random.shuffle(test_labels_copy)
float(np.sum(np.array(test_labels) == np.array(test_labels_copy))) / len(test_labels)

0.18477292965271594

5.预测

predictions = model.predict(x_test)
# predictions 中的每个元素都是长度为 46 的向量
predictions.shape

(2246, 46)

# 每个元素的总和为 1
np.sum(predictions[0])

0.99999994

np.argmax():获取array的某一个维度中数值最大的那个元素的索引

# 概率最大的类别就是预测类别
np.argmax(predictions[0])

3

番外1:处理label和loss的其他方法

之前采用One-hot编码,现在采用第一种:转化为整数张量

y_train = np.array(train_labels)
y_test = np.array(test_labels)

改变损失函数的选择:

  • 分类(One-hot)编码:使用categorical_crossentropy
  • 整数标签:使用sparse_categorical_crossentropy
model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['acc'])

新的损失函数在数学上与 categorical_crossentropy 完全相同,二者只是接口不同

番外2: 中间层维度足够大的重要性

model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
model.fit(partial_x_train,partial_y_train,epochs=20,batch_size=128,validation_data=(x_val, y_val))

现在网络的验证精度最大约为 71%,比前面下降了 8%。导致这一下降的主要原因在于,试图将大量信息(这些信息足够恢复 46 个类别的分割超平面)压缩到维度很小的中间空间。网络能够将大部分必要信息塞入这个四维表示中,但并不是全部信息。

在这里插入图片描述

这篇关于路透社新闻分类(多分类)--python深度学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511649

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3