路透社新闻分类--自然语言处理

2023-12-19 09:10

本文主要是介绍路透社新闻分类--自然语言处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

路透社新闻分类

  1. 数据准备和载入
  2. 查看文件基本信息
  3. 创建网络模型
  4. 训练网络模型
  5. 词向量预训练与模型优化
embedding_matrix = pd.read_csv('embedding_matrix.csv')
embedding_matrix

在这里插入图片描述

import numpy as np
import pandas as pd
from tkinter import _flatten
import tensorflow as tfembedding_matrix = pd.read_csv('embedding_matrix.csv')
data = np.load('reuters.npz', allow_pickle=True)
data.files   # 查看数据文件中的数据信息
X = data['x']   # 样本自变量
y = data['y']   # 样本标签(新闻主题类别)
pd.Series(X).apply(len).describe()   # 统计新闻词语数量的分布

在这里插入图片描述

wordList = _flatten(X.tolist())      # 将所有新闻报道转为一个一维元组
len(list(set(wordList)))             # 对单词编码去重并统计单词数量

30979

X_padding = tf.keras.preprocessing.sequence.pad_sequences(X, maxlen=200, padding='post')   # 执行padding操作

搭建RNN模型结构

input_shape=(200, )#文档长度
mask_zero=True
trainable=False不训练这个embedding
预训练embedding
30980*128=3965440就是我们要训练的参数的个数,即参数规模,这个参数是网络输出过程中的中间产物

# 搭建RNN神经网络模型
model = tf.keras.models.Sequential([tf.keras.layers.Embedding(30980, 128, input_shape=(200, ), mask_zero=True,weights=[embedding_matrix.values], trainable=False),tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)),tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),tf.keras.layers.Dense(64, activation='relu'),tf.keras.layers.Dense(46, activation='softmax')
])
model.summary()   # 查看网络结构

在这里插入图片描述

训练网络模型从而实现文本分类

# 网络模型训练参数设置
model.compile(loss='sparse_categorical_crossentropy',optimizer=tf.keras.optimizers.Adam(1e-4),metrics=['accuracy'])
model.fit(X_padding, y, validation_split=0.2, epochs=5, batch_size=8)   # 模型训练

在这里插入图片描述

这篇关于路透社新闻分类--自然语言处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511648

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整