keras 实现reuters路透社新闻多分类

2023-12-19 09:10

本文主要是介绍keras 实现reuters路透社新闻多分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

路透社reuters话题分类

       来自路透社的11,228条新闻数据集标有46个主题。与IMDB数据集一样,每条线都被编码为一系列字索引。

reuters数据集无法下载,详见本篇博客提供下载和使用:

https://blog.csdn.net/sinat_41144773/article/details/89843688

 代码实现

from keras.datasets import reuters
from keras.utils.np_utils import to_categorical
from keras import models
from keras.layers import LSTM
from keras.layers import Dense,Embedding
import numpy as np
import matplotlib.pyplot as plt
from keras.optimizers import Adam,RMSprop
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score,accuracy_score
# 获取数据
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=8000)# vectorized sequences
def vectorize_sequences(sequences, dimension=8000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1return resultsx_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)# using keras build-in methos to change to one-hot labels
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)# model setup
model = models.Sequential()model.add(Dense(64, activation='relu', input_shape=(8000,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(46, activation='softmax'))# model compile
model.summary()
model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])# validating our apporoach
x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]# training the model
history = model.fit(partial_x_train, partial_y_train, epochs=10, batch_size=256, validation_data=(x_val, y_val))# ploting the training and validation loss
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'g', label='Validating loss')
plt.title('Training and Validating loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()# ploting the training and validation accuracy
# plt.clf()
# acc = history.history['acc']
# val_acc = history.history['val_acc']
# plt.plot(epochs, acc, 'ro', label='Training acc')
# plt.plot(epochs, val_acc, 'r', label='Validating acc')
# plt.title('Training and Validating accuracy')
# plt.xlabel('Epochs')
# plt.ylabel('accuracy')
# plt.legend()
# plt.show()# evaluate loss and accuracy
final_result = model.evaluate(x_test, one_hot_test_labels)
print(final_result)y_predict = model.predict(x_test, batch_size=512, verbose=1)
# y_predict = (y_predict > 0.007).astype(int)
y_predict = (y_predict > 0.01).astype(int)
y_true = np.reshape(one_hot_test_labels, [-1])
y_pred = np.reshape(y_predict, [-1])# 评价指标
accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='binary')
f1score = f1_score(y_true, y_pred, average='binary')
micro_f1 = f1_score(y_true, y_pred,average='micro')
macro_f1 = f1_score(y_true, y_pred,average='macro')print('accuracy:',accuracy)
print('precision:',precision)
print('recall:',recall)
print('f1score:',f1score)
print('Macro-F1: {}'.format(macro_f1))
print('Micro-F1: {}'.format(micro_f1))

评价指标+多分类F值:Macro-F1和Micro-F1

accuracy: 0.9427097448604282
precision: 0.26482264054296323
recall: 0.9207479964381122
f1score: 0.4113376429636996
Macro-F1: 0.6906136522606285
Micro-F1: 0.9427097448604282

损失函数loss图

 

结束。

 

这篇关于keras 实现reuters路透社新闻多分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511643

相关文章

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络