【In Action】Keras 实现“路透社数据集”的新闻分类(多分类任务)

2023-12-19 09:10

本文主要是介绍【In Action】Keras 实现“路透社数据集”的新闻分类(多分类任务),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节使用路透社数据集,它包含许多短新闻及其对应的主题,由路透社在 1986 年发布。它是一个简单的、广泛使用的文本分类数据集。它包括 46 个不同的主题:某些主题的样本更多,但训练集中每个主题都有至少 10 个样本。 该数据集已被 Keras 内置。

步骤:

1. 加载数据

import kerasfrom keras.datasets import reuters
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
  • 参数 num_words=10000 将数据限定为前 10 000 个最常出现的单词。

我们有 8982 个训练样本和 2246 个测试样本。每个样本都是一个整数列表(表示单词索引)。

2. 准备数据

# 编码数据
import numpy as npdef vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1return results# 将数据向量化
x_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)

将标签向量化有两种方法:你可以将标签列表转换为整数张量,或者使用 one-hot 编码。one-hot 编码是分类数据广泛使用的一种格式,也叫分类编码( categorical encoding)。 Keras 内置了这个操作:

from keras.utils.np_utils import to_categoricalone_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

3. 构建网络

对于以前用过的 Dense 层的堆叠,每层只能访问上一层输出的信息。如果某一层丢失了与分类问题相关的一些信息,那么这些信息无法被后面的层找回,也就是说,每一层都可能成为信息瓶颈。上一个例子使用了 16 维的中间层,但对这个例子来说 16 维空间可能太小了,无法学会区分 46 个不同的类别。这种维度较小的层可能成为信息瓶颈,永久地丢失相关信息。

# 模型定义from keras import models, layersmodel = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(1000, )))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))
  • 网络的最后一层是大小为 46 的 Dense 层。这意味着,对于每个输入样本,网络都会输出一个 46 维向量。这个向量的每个元素(即每个维度)代表不同的输出类别。
  • 最后一层使用了 softmax 激活。你在 MNIST 例子中见过这种用法。网络将输出在 46 个不同输出类别上的概率分布——对于每一个输入样本,网络都会输出一个 46 维向量,其中 output[i] 是样本属于第 i 个类别的概率。 46 个概率的总和为 1。

对于这个例子,最好的损失函数是 categorical_crossentropy(分类交叉熵)。它用于衡量两个概率分布之间的距离,这里两个概率分布分别是网络输出的概率分布和标签的真实分布。通过将这两个分布的距离最小化,训练网络可使输出结果尽可能接近真实标签.

# 编译模型from keras import optimizers, losses
model.compile(optimizer=optimizers.RMSprop(),loss=losses.categorical_crossentropy,metrics=['accuracy'])

4. 模型训练

我们在训练数据中留出 1000 个样本作为验证集。

x_val = x_train[:1000]  # 划分出来的验证集
partial_x_train = x_train[1000:]  # 除去验证集后的训练集y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]
# 模型训练
history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))
  • 注意,调用 model.fit() 返回了一个 History 对象。这个对象有一个成员 history,它是一个字典,包含训练过程中的所有数据。

绘制损失值图像:

%matplotlib inlineimport matplotlib.pyplot as pltloss = history.history['loss']
val_loss = history.history['val_loss']epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

在这里插入图片描述

5. 在新的数据集上进行验证

你可以验证,模型实例的 predict 方法返回了在 46 个主题上的概率分布。我们对所有测试数据生成主题预测。

predictions = model.predict(x_test)

predictions 中的每个元素都是长度为 46 的向量。最大的元素就是预测类别,即概率最大的类别。

小结

  • 如果要对 N 个类别的数据点进行分类,网络的最后一层应该是大小为 N 的 Dense 层。
  • 对于单标签、多分类问题,网络的最后一层应该使用 softmax 激活,这样可以输出在 N 个输出类别上的概率分布。
  • 这种问题的损失函数几乎总是应该使用分类交叉熵。它将网络输出的概率分布与目标的真实分布之间的距离最小化。
  • 处理多分类问题的标签有两种方法。
    • 通过分类编码(也叫 one-hot 编码)对标签进行编码,然后使用 categorical_crossentropy 作为损失函数。
    • 将标签编码为整数,然后使用 sparse_categorical_crossentropy 损失函数。
  • 如果你需要将数据划分到许多类别中,应该避免使用太小的中间层,以免在网络中造成信息瓶颈。

这篇关于【In Action】Keras 实现“路透社数据集”的新闻分类(多分类任务)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/511641

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象