【论文阅读笔记】A Recent Survey of Vision Transformers for Medical Image Segmentation

本文主要是介绍【论文阅读笔记】A Recent Survey of Vision Transformers for Medical Image Segmentation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Khan A, Rauf Z, Khan A R, et al. A Recent Survey of Vision Transformers for Medical Image Segmentation[J]. arXiv preprint arXiv:2312.00634, 2023.

【论文概述】

本文是关于医学图像分割中视觉变换器(Vision Transformers,ViTs)的最新综述。文中详细回顾了ViTs及其与卷积神经网络(CNNs)结合形成的混合视觉Transformers(Hybrid Vision Transformers,HVTs)在医学图像分割方面的最新进展。文中讨论了这些技术如何通过模拟图像中的长距离关系来提高诊断、治疗计划和疾病监测的准确性。同时,还探讨了这些方法在不同医学图像模态(如CT、MRI、X射线等)中的实际应用,以及它们面临的挑战和未来的发展方向。

本文中规中矩,对涉及到的方法只是简单陈列,并没有细致的优缺点探讨,可以作为寻找对应方向论文的一个参考,笔记中对涉及到的方法根据之前读文经历进行简单的优缺点归纳。

【本文模型的分类方法】

  1. 本文首先对基于ViT的医学图像分割方法进行了全面综述,将其分为两大类:基于ViT的方法(ViT-based methods)和混合视觉Transformers的方法(HVT-based methods)。
  2. 对于基于ViT的方法,进一步将其细分为以下四类:
  • ViT在编码器(encoder)中的应用。

  • ViT在解码器(decoder)中的应用。

  • ViT在编码器-解码器之间(in between encoder-decoder)的应用。

  • 编码器和解码器都采用基于ViT的架构(both the encoder and decoder are ViT-based architectures)。

    3.对于混合视觉Transformers(HVT)的方法,提出了一个分类法:

  • 基于编码器的集成(encoder-based integration)。

  • 基于解码器的集成(decoder-based integration)。

【医学图像分割存在的一些挑战】

1.在医学图像中的对象内发现的尺寸范围很广

2.结构轮廓的模糊性,加上它们的不同纹理变化和复杂形状,这很容易产生不准确的结果

3.当将感兴趣的对象与背景隔离时,低强度对比度带来的挑战

4.没有足够的训练数据集

【4.1 ViT-based Medical Image Segmentation Approaches】

这一部分从四个方面探讨了ViTs在医学图像分割中的应用,包括ViT在编码器(Encoder)、解码器(Decoder)、编码器-解码器中的应用,以及ViT在编码器和解码器之间的应用。以下是对这些部分的总结:

  1. ViT in Encoder

    image-20231218083803640
    • 优点:通过在编码器中使用ViT,模型能有效捕获全局信息和多尺度特征,从而增强特征提取能力。
    • 代表模型:例如UNETR(UNet Transformer),利用ViT作为编码器来有效捕获输入体积的多尺度全球信息。
    • 缺点:可能会增加模型的计算复杂性和训练难度。
  2. ViT in Decoder

    image-20231218083930090
    • 优点:将ViT应用于解码器可以提高预测边界精度,并区分背景和兴趣对象。
    • 代表模型:如ConvTransSeg,采用CNN编码器和基于ViT的解码器。
    • 缺点:解码阶段的全局信息处理可能不如编码阶段有效。
  3. ViT in both Encoder-Decoder

    image-20231218084202901
    • 优点:在编码器和解码器都使用ViT的架构能全面利用ViT的长距离关注机制。
    • 代表模型:例如Swin-Unet和、nnFormer、MISSFormer、TransDeepLab,这些模型在编码器和解码器中都使用ViT结构,以捕获图像的全局和局部特征。
    • 缺点:这种方法可能导致更高的计算成本和更复杂的模型结构。
  4. ViT in between Encoder-Decoder

    image-20231218084439447
    • 优点:此方法通过在编码器和解码器之间引入ViT,可以在局部和全局特征之间建立更有效的连接。
    • 代表模型:例如ATTransUNet和DCA(Dual Cross-Attention)、ViT-V-Net,它们在编码器和解码器之间使用ViT,以改善特征融合和上下文建模。
    • 缺点:可能需要更复杂的训练策略来优化特征融合。

【4.2. Hybrid ViT-Based Medical Image Segmentation Approaches】

探讨了混合视觉Transformers(Hybrid Vision Transformers, HVTs)在医学图像分割中的应用。这些方法结合了卷积神经网络(CNNs)和视觉变换器(ViTs)的优势,以提高分割性能。以下是对这一部分内容的总结,包括三个主要方面:

  1. Hybrid ViT in Encoder

    image-20231218084947421
    • 优点:通过在编码器中结合HVT,模型能够同时捕获全局和局部特征,提高特征表示的丰富性。
    • 代表模型:例如TransUNet,结合了ViT的全局感知能力和U-Net的局部特征提取能力;TransBTS,结合了ViT和3D CNN,用于处理3D医学体积数据。
    • 缺点:混合模型可能会增加模型复杂度,需要更多的计算资源。
  2. Hybrid ViT in Decoder

    image-20231218085028808
    • 优点:在解码器中应用HVT可以提高分割边界的准确性,特别是在处理复杂的医学图像时。
    • 代表模型:例如UNetFormer,结合了3D Swin Transformer和CNN,以及基于变换器的解码器。
    • 缺点:这种方法可能导致解码阶段的计算负担加重。
  3. Hybrid ViT in both Encoder-Decoder

    image-20231218085135604
    • 优点:在编码器和解码器中都使用HVT可以充分利用ViT和CNN的优势,实现全面的特征提取和细节捕获。
    • 代表模型:例如MaxViT-UNet、SwinBTS,利用3D Swin Transformer和卷积操作来学习局部和全局级别的特征。
    • 缺点:这种结构可能导致模型过于复杂,难以训练和优化。

【5. ViT-based Medical Image Segmentation Applications】

作者详细讨论了基于视觉Transformers(Vision Transformers, ViTs)的医学图像分割应用,覆盖了从CT图像到X射线图像的多种医学成像方式。以下是对这一部分内容的概括总结:

  1. CT图像(CT Images)
    • 应用了ViT的方法能有效地处理CT图像,提高了病灶检测的准确性。
    • 代表模型:如TransBTS,利用ViT与3D CNN相结合,以处理3D CT数据。
  2. 病理学图像(Histopathological Images)
    • 在病理学图像分析中,ViT有助于细胞结构的精准分割和识别。
    • 代表模型:如TransPath,它将ViT与传统的CNN技术结合,以提高细胞和组织的分割效果。
  3. 显微镜图像(Microscopy Images)
    • ViT在处理显微镜图像时展现了提高分割准确性的潜力,特别是在复杂的细胞结构分割方面。
    • 代表模型:例如使用ViT的各种混合方法,它们结合CNN的局部特征识别能力和ViT的全局信息处理能力。
  4. MRI图像(MRI Images)
    • ViT在MRI图像分割中特别有效,能够处理复杂的脑部结构。
    • 代表模型:如Swin UNETR和TransBTS,它们在处理脑肿瘤分割等高复杂度任务中表现出色。
  5. 超声图像(Ultrasound Images)
    • ViT在超声图像分割中有助于提高边界检测的准确性,特别是在不规则形状的肿瘤识别方面。
    • 代表模型:例如结合ViT和CNN技术的混合模型,用于提高超声图像中特定组织或病变的识别能力。
  6. X射线图像(X-Ray Images)
    • ViT在X射线图像分割中表现出对细节的高敏感性,特别是在骨骼和其他硬组织的分割方面。
    • 代表模型:如结合CNN和ViT的模型,用于提高诸如肺部疾病识别和骨折检测的准确性。

这篇关于【论文阅读笔记】A Recent Survey of Vision Transformers for Medical Image Segmentation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/508522

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓