【复杂网络分析与可视化】——通过CSV文件导入Gephi进行社交网络可视化

2023-12-18 09:44

本文主要是介绍【复杂网络分析与可视化】——通过CSV文件导入Gephi进行社交网络可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、Gephi介绍

二、导入CSV文件构建网络

三、图片输出


一、Gephi介绍

Gephi具有强大的网络分析功能,可以进行各种网络度量,如度中心性、接近中心性、介数中心性等。它还支持社区检测算法,可以帮助用户发现网络中的群组和社区结构。此外,Gephi还提供了一组布局算法,用于在可视化时自动调整网络结构的位置,以便更好地展示网络的特征。

Gephi的可视化功能非常强大,可以将网络结构以图形方式呈现出来,并使用不同的颜色、形状和大小来表示节点和边的属性。用户可以使用丰富的过滤器和标签选项来控制可视化的细节,并可以交互式地浏览和探索网络结构。

Gephi是一个跨平台的工具,可以在Windows、Mac和Linux系统上运行。它使用Java开发,并提供了一个友好的用户界面,使用户可以轻松地导入、分析和可视化网络数据。

二、导入CSV文件构建网络

新建工程:

先下载数据:

sandi-auths | Collaboration Networks | Network Data Repository

Network Repository. An Interactive Scientific Network Data Repository.数据集:网络存储库不仅是第一个交互式存储库,而且是最大的网络存储库,拥有30多个领域(从生物到社会网络数据)的数千个捐赠。这个大型的综合网络图数据集对于做出重要的研究成果以及各种应用和领域(例如,网络科学,生物信息学,机器学习,数据挖掘,物理和社会科学)的基准网络数据集非常有用,包括关系,属性,异构,流,空间和时间序列网络数据以及非关系机器学习数据。所有图形数据集都可以轻松下载为标准一致的格式。我们还建立了一个多层次的交互式图分析引擎,允许用户可视化网络数据的结构、宏观层面的图数据统计以及重要的微观层面的节点和边的网络属性。

选择一个合适的协作数据集:

点开可以看到对应的参数: 

数据集的展示: 

该数据的部分统计参数: 

 下载好的数据集是MTX格式,这个Gephi处理不了,所以我们先用excel表格对数据进行简单的预处理,变成CSV的格式。

在数据资料部分,点击导入电子表格,找到创建好的.csv文件,选择导入即可。

 可以看到这里的源节点和目的节点是必选的。其他的可选。

 导入数据成功。

点击概览节点,可以设置对应的边和节点。 

 还可以选择不同的布局。

除此之外,还可以计算网络的数据: 平均度、平均加权度、网络直径、图密度、点击次数、PageRank、连接部件。

 针对节点和边的分类:这里叫做分割。

基于度的大小对节点的颜色进行了分类。 

左下角可以设置节点的标签:

三、图片输出

图片可以导出为PNG、PDF、SVG。 

 【复杂网络分析与可视化】——Gephi的安装及基本功能介绍

 关于复杂网络建模,我前面写了很多,大家可以学习参考。

【复杂网络建模】——常用绘图软件和库_图论画图软件

【复杂网络建模】——Pytmnet进行多层网络分析与可视化

【复杂网络建模】——Python通过平均度和随机概率构建ER网络

【复杂网络建模】——通过图神经网络来建模分析复杂网络

【复杂网络建模】——Python可视化重要节点识别(PageRank算法)

【复杂网络建模】——基于Pytorch构建图注意力网络模型

【复杂网络建模】——Hypergraphx: 用于高阶网络分析的库

【复杂网络建模】——基于节点相似性的社团划分算法

【复杂网络建模】——链路预测算法及其应用

 【复杂网络建模】——ER网络度分布、无标度网络度分布

这篇关于【复杂网络分析与可视化】——通过CSV文件导入Gephi进行社交网络可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507945

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3