I.MX RT1170双核学习(3):多核管理之MCMGR源码分析详解

2023-12-18 07:44

本文主要是介绍I.MX RT1170双核学习(3):多核管理之MCMGR源码分析详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文通过SDK中最简单的hello_world例程来说明一下双核程序如何运行。在CM7和CM4的工程中都有一个MCMGR(Multicore Manager)文件夹,它是用来管理多核之间的操作的,当然也包括我们前面提到的那些寄存器的设置。

在这里插入图片描述

文章目录

  • 1 MCMGR_EarlyInit
    • 1.1 MCMGR_TriggerEvent
  • 2 MCMGR_Init函数
    • 2.1 MCMGR_RegisterEvent函数
    • 2.2 事件回调函数
    • 2.3 mcmgr_late_init_internal
  • 3 MCMGR_StartCore函数
  • 4 MCMGR_GetStartupData函数
  • 5 MU中断接收函数
  • 6 双核状态机交互过程详解
  • 7 总结

我们现在就以CM7核激活CM4核为例,先分析一下CM7核的代码。实际上在CM7的例程中就调用了 MCMGR_EarlyInitMCMGR_InitMCMGR_StartCore三个函数就能启动M4核了。下面就来分析一下这三个函数:

1 MCMGR_EarlyInit

无论是CM7还是CM4,都需要调用这个函数,它是用来初始化底层的多核管理库(MCMGR)的,这个函数应该尽可能在reset_handler附近调用,表示某个核已经启动并准备好执行任务。在这里,这个函数在ResetISR->SystemInit中就调用了。这个函数最终调用的是mcmgr_early_init_internal

mcmgr_status_t mcmgr_early_init_internal(mcmgr_core_t coreNum) 
{MU_Init(MUA);  //实际上就是使能MU的时钟(M7核初始化MUA,M4核这里的参数为MUB)return MCMGR_TriggerEvent(kMCMGR_RemoteCoreUpEvent, 0);
}

1.1 MCMGR_TriggerEvent

MCMGR_TriggerEvent函数实际上调用的是MCMGR_TriggerEventCommon

mcmgr_status_t MCMGR_TriggerEvent(mcmgr_event_type_t type, uint16_t eventData)
{return MCMGR_TriggerEventCommon(type, eventData, false);
}

所以来看一下MCMGR_TriggerEventCommon函数:

/*! @brief Type definition of event types. */
typedef enum _mcmgr_event_type_t
{kMCMGR_RemoteCoreUpEvent = 1,kMCMGR_RemoteCoreDownEvent,kMCMGR_RemoteExceptionEvent,kMCMGR_StartupDataEvent,kMCMGR_FeedStartupDataEvent,kMCMGR_RemoteRPMsgEvent,kMCMGR_RemoteApplicationEvent,kMCMGR_FreeRtosMessageBuffersEvent,kMCMGR_EventTableLength
} mcmgr_event_type_t;static mcmgr_status_t MCMGR_TriggerEventCommon(mcmgr_event_type_t type, uint16_t eventData, bool forcedWrite)
{uint32_t remoteData;remoteData = (((uint32_t)type) << 16) | eventData;return mcmgr_trigger_event_internal(remoteData, forcedWrite);
}

接着看一下mcmgr_trigger_event_internal函数:

/* MCMGR MU channel index - used for passing startupData */
#define MCMGR_MU_CHANNEL 3mcmgr_status_t mcmgr_trigger_event_internal(uint32_t remoteData, bool forcedWrite)
{/* When forcedWrite is false, execute the blocking call, i.e. wait until previouslysent data is processed. Otherwise, run the non-blocking version of the MU send function. */if (false == forcedWrite){MU_SendMsg(MUA, MCMGR_MU_CHANNEL, remoteData);// M7执行这条,M4的第一个参数MUA换为MUB}else{MU_SendMsgNonBlocking(MUA, MCMGR_MU_CHANNEL, remoteData);// M7执行这条,M4的第一个参数MUA换为MUB}return kStatus_MCMGR_Success;
}

这里的forcedWrite参数为false的时候,执行阻塞写函数,等待上一次发送的数据处理完了才发送;forcedWrite参数为true时,直接往寄存器中写数据,这个函数最好搭配中断使用。

从上面我们知道,mcmgr_early_init_internal实际上就是通过自己核对应的MU的通道3发送一个组合的32位数(高16位为type,低16位为eventData,这里typekMCMGR_RemoteCoreUpEventeventData为0)给对方核对应的MU的通道3。

  • 如果不知道MU的,建议看一下我之前介绍MU的文章:双核通信之MU消息单元详解

2 MCMGR_Init函数

接着就是调用MCMGR_Init函数:

mcmgr_status_t MCMGR_Init(void)
{// 通过OCOTP熔丝相应位可以判断当前是CM4(返回0)还是CM7核(返回1)mcmgr_core_t coreNum = MCMGR_GetCurrentCore();// 两个回调函数MCMGR_RegisterEvent(kMCMGR_StartupDataEvent, MCMGR_StartupDataEventHandler, (void *)&s_mcmgrCoresContext[coreNum]);MCMGR_RegisterEvent(kMCMGR_FeedStartupDataEvent, MCMGR_FeedStartupDataEventHandler, (void *)&s_mcmgrCoresContext[(coreNum == 0) ? 1 : 0]);return mcmgr_late_init_internal(coreNum);
}

MCMGR_RegisterEvent用来注册某个事件(参数一)的回调函数(参数二),其中参数三s_mcmgrCoresContext会传给回调函数作为其参数供其使用,它的定义如下:

typedef struct _mcmgr_core_context
{/*! @brief Current state of the core. */mcmgr_core_state_t state;/*! @brief Startup data, if state >= kMCMGR_RunningCoreState */uint32_t startupData;
} mcmgr_core_context_t;/*! @brief Type definition of possible core states. */
typedef enum _mcmgr_core_state
{kMCMGR_ResetCoreState = 0,kMCMGR_StartupGettingLowCoreState,kMCMGR_StartupGettingHighCoreState,kMCMGR_RunningCoreState,
} mcmgr_core_state_t;volatile mcmgr_core_context_t s_mcmgrCoresContext[2] = {{.state = kMCMGR_ResetCoreState, .startupData = 0}, {.state = kMCMGR_ResetCoreState, .startupData = 0}};

看样子似乎是一个状态机,其中:

  • s_mcmgrCoresContext[0]用于kMCMGR_StartupDataEvent事件的MCMGR_StartupDataEventHandler回调

  • s_mcmgrCoresContext[1]用于kMCMGR_FeedStartupDataEvent事件的MCMGR_FeedStartupDataEventHandler回调

具体完成了什么我们后面用到了再分析。

2.1 MCMGR_RegisterEvent函数

顾名思义就是用来注册回调函数的,实现也非常简单,就是定义了一个结构体数组,然后填充即可:

/*! @brief Type definition of structure with event handler and data. */
typedef struct _mcmgr_event
{/*! @brief Pointer to callback function. */mcmgr_event_callback_t callback;/*! @brief Context data for callback. */void *callbackData;
} mcmgr_event_t;mcmgr_event_t MCMGR_eventTable[kMCMGR_EventTableLength] = {0};mcmgr_status_t MCMGR_RegisterEvent(mcmgr_event_type_t type, mcmgr_event_callback_t callback, void *callbackData)
{if (type >= kMCMGR_EventTableLength){return kStatus_MCMGR_Error;}MCMGR_eventTable[type].callback = ((void *)0);MCMGR_eventTable[type].callbackData = callbackData;MCMGR_eventTable[type].callback = callback;return kStatus_MCMGR_Success;
}

mcmgr_event_type_t有8种事件,每个事件占据MCMGR_eventTable数组的一个索引。

接下来看一下两个回调函数完成了什么:

2.2 事件回调函数

下面来看一下MCMGR_StartupDataEventHandlerMCMGR_FeedStartupDataEventHandler

static void MCMGR_StartupDataEventHandler(uint16_t startupDataChunk, void *context)
{mcmgr_core_context_t *coreContext = (mcmgr_core_context_t *)context;switch (coreContext->state){case kMCMGR_StartupGettingLowCoreState:coreContext->startupData = startupDataChunk; /* Receive the low part */coreContext->state       = kMCMGR_StartupGettingHighCoreState;(void)MCMGR_TriggerEvent(kMCMGR_FeedStartupDataEvent, (uint16_t)kMCMGR_StartupGettingHighCoreState);break;case kMCMGR_StartupGettingHighCoreState:coreContext->startupData |= ((uint32_t)startupDataChunk) << 16;coreContext->state = kMCMGR_RunningCoreState;(void)MCMGR_TriggerEvent(kMCMGR_FeedStartupDataEvent, (uint16_t)kMCMGR_RunningCoreState);break;default:break;}
}static void MCMGR_FeedStartupDataEventHandler(uint16_t startupDataChunk, void *context)
{mcmgr_core_context_t *coreContext = (mcmgr_core_context_t *)context;switch ((mcmgr_core_state_t)startupDataChunk){case kMCMGR_StartupGettingLowCoreState:(void)MCMGR_TriggerEvent(kMCMGR_StartupDataEvent, (uint16_t)(coreContext->startupData & 0xFFFFU));coreContext->state = (mcmgr_core_state_t)startupDataChunk;break;case kMCMGR_StartupGettingHighCoreState:(void)MCMGR_TriggerEvent(kMCMGR_StartupDataEvent, (uint16_t)((coreContext->startupData) >> 16));coreContext->state = (mcmgr_core_state_t)startupDataChunk;break;case kMCMGR_RunningCoreState:coreContext->state = (mcmgr_core_state_t)startupDataChunk;break;default:break;}
}

这里的context就是前面注册回调函数时的第三个参数s_mcmgrCoresContext[0/1],前面我们看到默认的statekMCMGR_ResetCoreState,所以不会进入任何分支中,具体初始状态在何时改变的,我们后续分析。

我们看到这里两个Handler最后都是调用MCMGR_TriggerEvent函数,即通过MU发送一个32位数给对方核。

2.3 mcmgr_late_init_internal

MCMGR_Init最后调用mcmgr_late_init_internal打开MU的通道3的接收中断:
(下面代码为CM7核的,CM4核打开的是MUB)

mcmgr_status_t mcmgr_late_init_internal(mcmgr_core_t coreNum)
{MU_EnableInterrupts(MUA, (uint32_t)kMU_Rx3FullInterruptEnable);NVIC_SetPriority(MUA_IRQn, 2);NVIC_EnableIRQ(MUA_IRQn);return kStatus_MCMGR_Success;
}

在前面的MCMGR_TriggerEvent中,最后也是使用通道3发送的消息,所以在SDK中使用MU的通道3来完成双核执行的同步。

3 MCMGR_StartCore函数

对于CM7来说,注册完回调函数之后,还需要调用MCMGR_StartCore来启动CM4核。

MCMGR_StartCore(kMCMGR_Core1, (void *)(char *)CORE1_BOOT_ADDRESS, 2, kMCMGR_Start_Synchronous);

具体实现如下:

#define CORE1_BOOT_ADDRESS (void *)0x20200000
MCMGR_StartCore(kMCMGR_Core1, (void *)(char *)CORE1_BOOT_ADDRESS, 2, kMCMGR_Start_Synchronous); //kMCMGR_Core1=1mcmgr_status_t MCMGR_StartCore(mcmgr_core_t coreNum, void *bootAddress, uint32_t startupData, mcmgr_start_mode_t mode)
{mcmgr_status_t ret;/* 填充startupData */s_mcmgrCoresContext[coreNum].startupData = startupData;/* 设置相关寄存器 */ret = mcmgr_start_core_internal(coreNum, bootAddress);if (mode == kMCMGR_Start_Synchronous){/* 等待M4核读取和确认我们刚刚填充的startupData */while (s_mcmgrCoresContext[coreNum].state != kMCMGR_RunningCoreState){}}return kStatus_MCMGR_Success;
}

这里假设我们将CM4的程序通过CM7的映射地址0x20200000拷贝到CM4的TCM中了,如果CM4的程序在NOR Flash中,填写对应的地址即可。

mcmgr_start_core_internal就是我们上一篇文章双核相互激活和启动流程提到的CM7激活CM4相关寄存器的修改:

mcmgr_status_t mcmgr_start_core_internal(mcmgr_core_t coreNum, void *bootAddress)
{IOMUXC_LPSR_GPR->GPR0 = IOMUXC_LPSR_GPR_GPR0_CM4_INIT_VTOR_LOW(((uint32_t)(char *)bootAddress) >> 3u);IOMUXC_LPSR_GPR->GPR1 = IOMUXC_LPSR_GPR_GPR1_CM4_INIT_VTOR_HIGH(((uint32_t)(char *)bootAddress) >> 16u);SRC->CTRL_M4CORE = SRC_CTRL_M4CORE_SW_RESET_MASK;SRC->SCR |= SRC_SCR_BT_RELEASE_M4_MASK;return kStatus_MCMGR_Success;
}

4 MCMGR_GetStartupData函数

在CM4核启动后会调用MCMGR_GetStartupData函数,直到这个函数返回kStatus_MCMGR_Success

do{status = MCMGR_GetStartupData(&startupData);} while (status != kStatus_MCMGR_Success);

现在来看一下这个函数:

mcmgr_status_t MCMGR_GetStartupData(uint32_t *startupData)
{if (s_mcmgrCoresContext[1].state == kMCMGR_ResetCoreState){s_mcmgrCoresContext[1].state = kMCMGR_StartupGettingLowCoreState;if (kStatus_MCMGR_Success !=MCMGR_TriggerEvent(kMCMGR_FeedStartupDataEvent, (uint16_t)kMCMGR_StartupGettingLowCoreState)){return kStatus_MCMGR_Error;}}return mcmgr_get_startup_data_internal(1, startupData);
}mcmgr_status_t mcmgr_get_startup_data_internal(mcmgr_core_t coreNum, uint32_t *startupData)
{if (s_mcmgrCoresContext[1].state >= kMCMGR_RunningCoreState){*startupData = s_mcmgrCoresContext[1].startupData;return kStatus_MCMGR_Success;}return kStatus_MCMGR_NotReady;
}

实际上也是和刚刚的状态机相关。

5 MU中断接收函数

现在我们对CM7和CM4的交互过程还是一头雾水,前面注册的回调函数什么时刻被调用,CM7启动CM4后等待s_mcmgrCoresContext[coreNum].state变为kMCMGR_RunningCoreState,还有CM4启动后,CM4也要等待状态变化再往下执行程序,那么这些状态是在哪里被修改的呢?下面就来分析一下这个过程。

前面我们打开了中断,所以我们首先看一下中断处理回调函数,在通道三收到数据后将调用此回调函数:(下面为CM7核MUA的回调,MUB的类似)

void MU_Rx3FullFlagISR(void)
{uint32_t data;uint16_t eventType;uint16_t eventData;#if defined(FSL_FEATURE_MU_SIDE_A)data = MU_ReceiveMsgNonBlocking(MUA, 3);
#elif defined(FSL_FEATURE_MU_SIDE_B)data = MU_ReceiveMsgNonBlocking(MUB, 3);
#endif/* To be MISRA compliant, return value needs to be checked even it could not never be 0 */if (0U != data){eventType = (uint16_t)(data >> 16u);eventData = (uint16_t)(data & 0x0000FFFFu);if (((mcmgr_event_type_t)eventType >= kMCMGR_RemoteCoreUpEvent) &&((mcmgr_event_type_t)eventType < kMCMGR_EventTableLength)){if (MCMGR_eventTable[(mcmgr_event_type_t)eventType].callback != ((void *)0)){MCMGR_eventTable[(mcmgr_event_type_t)eventType].callback(eventData, MCMGR_eventTable[(mcmgr_event_type_t)eventType].callbackData);}}}
}
  • 在理论上我们的程序中没有发送数据内容为0的代码,但是为了符合MISRA规范,这里还是检查了0U != data

前面在MCMGR_TriggerEvent中,我们将typeevent组合成一个32位的数发送给对方,这里同样的,我们收到数据后取出高16位的type和低16位的event。然后调用我们使用MCMGR_RegisterEvent注册的回调函数,第一个参数为eventData,第二个参数为我们注册的时候提供的callbackData(这里为s_mcmgrCoresContext)。

6 双核状态机交互过程详解

看完了中断函数后,感觉两个核有一些联系了,我们先来看一下两个核的执行流程:
在这里插入图片描述
这些函数前面都分析过了,但是里面状态机的状态改变似乎有些复杂,而状态的改变是通过双核之间的通道3进行交互的,这里我们就来捋清里面的流程:

  • 这里通道间发送数据为32位,高16位为type,低16位为eventData,下面都表示为(type, eventData)

1、MCMGR_EarlyInit
发送32位数据,(kMCMGR_RemoteCoreUpEvent,0)。由于后面我们在MCMGR_Init函数中并没有注册kMCMGR_RemoteCoreUpEvent的回调函数,实际上这个消息会被忽略。

2、MCMGR_Init
这里没有发送任何数据,但是注册了两个回调函数,在回调函数中会发送数据:
在这里插入图片描述

3、启动CM4:MCMGR_StartCore

s_mcmgrCoresContext[1].startupData = 2;
while (s_mcmgrCoresContext[1].state != kMCMGR_RunningCoreState);

这里CM7将s_mcmgrCoresContext[1]startupData设置为了2,然后等待s_mcmgrCoresContext[1]state变为kMCMGR_RunningCoreState

4、CM4和CM7消息同步
(1)CM4在MCMGR_GetStartupData中将s_mcmgrCoresContext[1]state设置为了kMCMGR_StartupGettingLowCoreState,然后向CM7发送(kMCMGR_FeedStartupDataEvent, kMCMGR_StartupGettingLowCoreState)

(2)在CM7接收到这个32位消息后,将进入MCMGR_FeedStartupDataEventHandler中,向CM4发送(kMCMGR_StartupDataEvent, 2),然后将state设置为kMCMGR_StartupGettingLowCoreState

case kMCMGR_StartupGettingLowCoreState:(void)MCMGR_TriggerEvent(kMCMGR_StartupDataEvent, (uint16_t)(coreContext->startupData & 0xFFFFU));coreContext->state = (mcmgr_core_state_t)startupDataChunk;break;

此时双核的状态如下:
在这里插入图片描述

(3)CM4收到(kMCMGR_StartupDataEvent, 0),进入MCMGR_StartupDataEventHandler的下面分支:

case kMCMGR_StartupGettingLowCoreState:coreContext->startupData = startupDataChunk; /* Receive the low part */coreContext->state       = kMCMGR_StartupGettingHighCoreState;(void)MCMGR_TriggerEvent(kMCMGR_FeedStartupDataEvent, (uint16_t)kMCMGR_StartupGettingHighCoreState);break;

startupData设置为2,state设置为kMCMGR_StartupGettingHighCoreState,然后发送(kMCMGR_FeedStartupDataEvent, kMCMGR_StartupGettingHighCoreState)给CM7。

(4)CM7收到(kMCMGR_FeedStartupDataEvent, kMCMGR_StartupGettingHighCoreState),进入MCMGR_FeedStartupDataEventHandler的下面分支:

case kMCMGR_StartupGettingHighCoreState:(void)MCMGR_TriggerEvent(kMCMGR_StartupDataEvent, (uint16_t)((coreContext->startupData) >> 16));coreContext->state = (mcmgr_core_state_t)startupDataChunk;break;

这里发送(kMCMGR_StartupDataEvent, (uint16_t)(2>> 16))给CM4,然后设置自身的statekMCMGR_StartupGettingHighCoreState

此时双核的状态如下:
在这里插入图片描述

(5)CM4收到(kMCMGR_StartupDataEvent, 0)后,进入MCMGR_StartupDataEventHandler的下面分支:

case kMCMGR_StartupGettingHighCoreState:coreContext->startupData |= ((uint32_t)startupDataChunk) << 16;coreContext->state = kMCMGR_RunningCoreState;(void)MCMGR_TriggerEvent(kMCMGR_FeedStartupDataEvent, (uint16_t)kMCMGR_RunningCoreState);break;

startupData与之前收到的低16位进行组合,然后赋到startupData中,即CM7在MCMGR_StartCore函数中的第三个参数传给了CM4。然后将state设置为kMCMGR_RunningCoreState,并向CM7发送(kMCMGR_FeedStartupDataEvent, kMCMGR_RunningCoreState)

(6)CM7收到(kMCMGR_FeedStartupDataEvent, kMCMGR_RunningCoreState)后进入MCMGR_FeedStartupDataEventHandler中的kMCMGR_RunningCoreState分支:

case kMCMGR_RunningCoreState:coreContext->state = (mcmgr_core_state_t)startupDataChunk;break;

最终就将state设置为了kMCMGR_RunningCoreState。此时在MCMGR_StartCore中等待s_mcmgrCoresContext[1]state变为kMCMGR_RunningCoreState则成立,此时CM7知道CM4已经成功启动。

最终的状态如下:
在这里插入图片描述

7 总结

从上面状态机分析可知,CM7仅用了kMCMGR_FeedStartupDataEvent,而CM4仅用了kMCMGR_StartupDataEvent。在CM4启动后,先发送一个消息给CM7,然后CM7开始传startupData给CM4,最终CM7的状态都变为kMCMGR_RunningCoreState,表示CM7知道CM4已经启动了,就可以执行其它操作了。

这篇关于I.MX RT1170双核学习(3):多核管理之MCMGR源码分析详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507618

相关文章

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip