SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

本文主要是介绍SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测

目录

    • SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现GWO-CNN-GRU-selfAttention灰狼算法优化卷积门控循环单元融合自注意力机制多变量多步时间序列预测,灰狼算法优化学习率,卷积核大小,神经元个数,以最小MAPE为目标函数;
在这里插入图片描述

CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。

GRU门控单元个数:GRU是一种适用于序列数据的循环神经网络,其神经元个数决定了模型的复杂性和记忆能力。较多的GRU神经元可以提高模型的学习能力,但可能导致过拟合。

学习率:学习率是训练深度学习模型时的一个关键超参数,它控制每次参数更新的步长。学习率过大可能导致模型不稳定和发散,学习率过小可能导致训练过慢或陷入局部最小值。

自注意力层 (Self-Attention):Self-Attention自注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。自注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,自注意力机制可以用于对序列中不同时间步之间的相关性进行建模。

在这里插入图片描述
2.运行环境为Matlab2023a及以上,提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线);

3.excel数据集(负荷数据集),输入多个特征,输出单个变量,考虑历史特征的影响,多变量多步时间序列预测(多步预测即预测下一天96个时间点),main.m为主程序,运行即可,所有文件放在一个文件夹;

在这里插入图片描述
4.命令窗口输出SSE、RMSE、MSE、MAE、MAPE、R2、r多指标评价;
适用领域:负荷预测、风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Grey Wolf Optimizer
% 灰狼优化算法function [Alpha_score, Alpha_pos, Convergence_curve, bestPred,bestNet,bestInfo ] = GWO(SearchAgents_no, Max_iter, lb, ub, dim, fobj)
% 输入参数:
% SearchAgents_no:搜索个体的数量
% Max_iter:最大迭代次数
% lb:搜索空间的下界(一个1维向量)
% ub:搜索空间的上界(一个1维向量)
% dim:问题的维度
% fobj:要优化的目标函数,输入为一个位置向量,输出为一个标量% 初始化alpha、beta和delta的位置向量
Alpha_pos = zeros(1, dim);
Alpha_score = inf; % 对于最小化问题,请将其改为-infBeta_pos = zeros(1, dim);
Beta_score = inf; % 对于最小化问题,请将其改为-infDelta_pos = zeros(1, dim);
Delta_score = inf; % 对于最小化问题,请将其改为-inf% 初始化领导者的位置向量和得分Positions = ceil(rand(SearchAgents_no, dim) .* (ub - lb) + lb);Convergence_curve = zeros(1, Max_iter);l = 0; % 迭代计数器% 主循环
while l < Max_iterfor i = 1:size(Positions, 1)% 将超出搜索空间边界的搜索代理放回搜索空间内Flag4ub = Positions(i, :) > ub;Flag4lb = Positions(i, :) < lb;Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;% 计算每个搜索个体的目标函数值[fitness,Value,Net,Info] = fobj(Positions(i, :));% 更新Alpha、Beta和Delta的位置向量if fitness < Alpha_scoreAlpha_score = fitness;       % 更新Alpha的得分Alpha_pos = Positions(i, :); % 更新Alpha的位置向量bestPred = Value;bestNet = Net;bestInfo = Info;endif fitness > Alpha_score && fitness < Beta_scoreBeta_score = fitness;       % 更新Beta的得分Beta_pos = Positions(i, :); % 更新Beta的位置向量endif fitness > Alpha_score && fitness > Beta_score && fitness < Delta_scoreDelta_score = fitness;       % 更新Delta的得分Delta_pos = Positions(i, :); % 更新Delta的位置向量endenda = 2 - l * ((2) / Max_iter); % a从2线性减少到0% 更新搜索个体的位置向量for i = 1:size(Positions, 1)for j = 1:size(Positions, 2)r1 = rand(); % r1是[0,1]区间的随机数r2 = rand(); % r2是[0,1]区间的随机数A1 = 2 * a * r1 - a; % 参考文献中的公式(3.3)C1 = 2 * r2; % 参考文献中的公式(3.4)D_alpha = abs(C1 * Alpha_pos(j) - Positions(i, j)); % 参考文献中的公式(3.5)-part 1X1 = Alpha_pos(j) - A1 * D_alpha; % 参考文献中的公式(3.6)-part 1r1 = rand();r2 = rand();

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

这篇关于SCI一区级 | Matlab实现GWO-CNN-GRU-selfAttention多变量多步时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507354

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一