强化学习实战(一)(tensorlayer乒乓球教程)

2023-12-18 06:10

本文主要是介绍强化学习实战(一)(tensorlayer乒乓球教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

详细请参考tensorlayer官方文档:http://tensorlayercn.readthedocs.io/zh/latest/

运行乒乓球例子
在本教程的第二部分,我们将运行一个深度强化学习的例子,它在Karpathy的两篇博客 Deep Reinforcement Learning:Pong from Pixels 有介绍。

python tutorial_atari_pong.py
在运行教程代码之前 您需要安装 OpenAI gym environment ,它提供了大量强化学习常用的游戏环境。 如果一切运行正常,您将得到以下的输出:

[2016-07-12 09:31:59,760] Making new env: Pong-v0
[TL] InputLayer input_layer (?, 6400)
[TL] DenseLayer relu1: 200, relu
[TL] DenseLayer output_layer: 3, identity
param 0: (6400, 200) (mean: -0.000009 median: -0.000018 std: 0.017393)
param 1: (200,) (mean: 0.000000 median: 0.000000 std: 0.000000)
param 2: (200, 3) (mean: 0.002239 median: 0.003122 std: 0.096611)
param 3: (3,) (mean: 0.000000 median: 0.000000 std: 0.000000)
num of params: 1280803
layer 0: Tensor(“Relu:0”, shape=(?, 200), dtype=float32)
layer 1: Tensor(“add_1:0”, shape=(?, 3), dtype=float32)
episode 0: game 0 took 0.17381s, reward: -1.000000
episode 0: game 1 took 0.12629s, reward: 1.000000 !!!!!!!!
episode 0: game 2 took 0.17082s, reward: -1.000000
episode 0: game 3 took 0.08944s, reward: -1.000000
episode 0: game 4 took 0.09446s, reward: -1.000000
episode 0: game 5 took 0.09440s, reward: -1.000000
episode 0: game 6 took 0.32798s, reward: -1.000000
episode 0: game 7 took 0.74437s, reward: -1.000000
episode 0: game 8 took 0.43013s, reward: -1.000000
episode 0: game 9 took 0.42496s, reward: -1.000000
episode 0: game 10 took 0.37128s, reward: -1.000000
episode 0: game 11 took 0.08979s, reward: -1.000000
episode 0: game 12 took 0.09138s, reward: -1.000000
episode 0: game 13 took 0.09142s, reward: -1.000000
episode 0: game 14 took 0.09639s, reward: -1.000000
episode 0: game 15 took 0.09852s, reward: -1.000000
episode 0: game 16 took 0.09984s, reward: -1.000000
episode 0: game 17 took 0.09575s, reward: -1.000000
episode 0: game 18 took 0.09416s, reward: -1.000000
episode 0: game 19 took 0.08674s, reward: -1.000000
episode 0: game 20 took 0.09628s, reward: -1.000000
resetting env. episode reward total was -20.000000. running mean: -20.000000
episode 1: game 0 took 0.09910s, reward: -1.000000
episode 1: game 1 took 0.17056s, reward: -1.000000
episode 1: game 2 took 0.09306s, reward: -1.000000
episode 1: game 3 took 0.09556s, reward: -1.000000
episode 1: game 4 took 0.12520s, reward: 1.000000 !!!!!!!!
episode 1: game 5 took 0.17348s, reward: -1.000000
episode 1: game 6 took 0.09415s, reward: -1.000000
这个例子让神经网络通过游戏画面来学习如何像人类一样打乒乓球。神经网络将于伪AI电脑对战不断地对战,最后学会战胜它。 在经过15000个序列的训练之后,神经网络就可以赢得20%的比赛。 在20000个序列的训练之后,神经网络可以赢得35%的比赛, 我们可以看到计算机学的越来越快,这是因为它有更多的胜利的数据来进行训练。 训练了30000个序列后,神经网络再也不会输了。

render = False
resume = False
如果您想显示游戏过程,那就设置 render 为 True 。 当您再次运行该代码,您可以设置 resume 为 True,那么代码将加载现有的模型并且会基于它继续训练。

下面来介绍安装和运行demo教程。
pip install gym

OpenAI Gym是开发和比较强化学习算法的工具包。
强化学习关注的是做出好决策,而监督式学习和非监督式学习主要关注的是做出预测。
强化学习有两个基本概念:环境(即外部世界)和智能体(即你正在编写的算法)。智能体向环境发送行为,环境回复观察和奖励(即分数)。
OpenAI Gym由两部分组成:
1.gym开源库:一个测试问题集合—环境(environment),可以用于自己的强化学习算法开发,这些环境有共享的接口,允许用户设计通用的算法
2.OpenAI Gym服务: 一个站点和API,允许用户对他们训练的算法进行性能比较。

运行一个简单例子,移动平台使木棒不掉落。
import gym
from gym.wrappers import Monitor

env = gym.make(‘CartPole-v0’)
env = Monitor(env,directory=’D:\其他\技术文献\强化_深度学习\gym\cartpole-experiment-1’,video_callable=False, write_upon_reset=True)
for i_episode in range(20):
observation = env.reset()
for t in range(100):
env.render()
print(observation)
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
print(“Episode finished after {} timesteps”.format(t+1))
break
这里写图片描述

接下来开始进入tensorlayer乒乓球教程:
python tutorial_atari_pong.py

报错:No module named ‘atari_py’

虽然安装了gym,但是缺少atari_py模块。
网上搜索到:
pip install –no-index -f https://github.com/Kojoley/atari-py/releases atari_py

C:\Users\23683>pip install –no-index -f https://github.com/Kojoley/atari-py/releases atari_py
Looking in links: https://github.com/Kojoley/atari-py/releases
Collecting atari_py
Downloading https://github.com/Kojoley/atari-py/releases/download/0.1.1/atari_py-0.1.1-cp36-cp36m-win_amd64.whl (666kB)
100% |████████████████████████████████| 675kB 133kB/s
Requirement already satisfied: numpy in c:\users\23683\anaconda3\lib\site-packages (from atari_py) (1.14.5)
Requirement already satisfied: six in c:\users\23683\anaconda3\lib\site-packages (from atari_py) (1.11.0)
Installing collected packages: atari-py
Successfully installed atari-py-0.1.1
安装成功。

再次运行python tutorial_atari_pong.py
成功!

这篇关于强化学习实战(一)(tensorlayer乒乓球教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507318

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边