视觉标记定位aruco使用

2023-12-18 05:32

本文主要是介绍视觉标记定位aruco使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://lightsail.blog.csdn.net/article/details/102752780

视觉标记定位aruco使用

沧海飞帆 2019-10-26 11:05:51 2657 收藏 14

分类专栏: SLAM 文章标签: opencv aruco定位

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/ktigerhero3/article/details/102752780

版权

本文的目的是实现生成一张marker broad图片,告诉标记检测程序tag在真实世界中的实际大小。
检测成功后得到marker的id,四个角点坐标,marker到相机的平移和旋转。

1.下载安装参考

opencv 中的aruco源码下载要到下面地址
opencv 中的aruco源码下载
https://github.com/opencv/opencv_contrib/tree/master/modules/aruco
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0

2.生成单个marker图片

程序如下

#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "opencv2/core/core.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>using namespace std;
using namespace cv;int main()
{cv::Mat markerImage;cv::Ptr<cv::aruco::Dictionary> dictionary = 	cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);cv::aruco::drawMarker(dictionary, 23, 200, markerImage, 1);imwrite("./aruco_tag.png",markerImage);imshow("test", markerImage);//显示markerwaitKey();return 0;
}

cv::aruco::drawMarker
第一个参数是之前创建的Dictionary对象。
第二个参数是marker的id,在这个例子中选择的是字典DICT_6X6_250 的第23个marker。注意到每个字典是由不同数目的Marker组成的,在这个例子中的字典中,有效的Id数字范围是0到249。不在有效区间的特定id将会产生异常。
三个参数,200,是输出Marker图像的大小。在这个例子中,输出的图像将是200x200像素大小。注意到这一参数需要满足能够存储特定字典 的所有位。举例来说,你不能为6x6大小的marker生成一个5x5图像(这还没有考虑到Marker的边界)。除此之外,为了避免变形,这一参数最好和位数+边界的大小成正比,或者至少要比marker的大小大得多(如这个例子中的200),这样变形就不显著了
第四个参数是输出的图像。
最终,最后一个参数是一个可选的参数,它指定了Marer黑色边界的大小。这一大小与位数数目成正比。例如,值为2意味着边界的宽度将会是2的倍数。默认的值为1。

3 . 打印并标定相机内参

注意,打印的时候如果用像素为200200的图像打印,实际打印大小为20cm20cm,那么一个像素对应1毫米。
内参标定就不介绍了,此实验使用内参为

intrinsic_matrix: !!opencv-matrixrows: 3cols: 3dt: ddata: [ 420.019, 0., 330.8676, 0.,419.6044, 217.8731, 0., 0., 1. ]
distortion_vector: !!opencv-matrixrows: 1cols: 4dt: ddata: [ -0.3549, 0.1151, -0.0035, -0.0029 ]

的相机拍出来的图像如下
在这里插入图片描述

4.检测marker并得到id和相对位移

确定好实际打印出来的marker的边长和内参就可以检测并计算了。
其中markerlength表示marker的实际物理长度。
使用上面的图像和内参程序如下

#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "opencv2/core/core.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Geometry>
#include <opencv2/core/eigen.hpp>using namespace std;
using namespace cv;int main()
{cv::Mat m_image=imread("./mark.jpg");if(m_image.empty()){cout<<"m_image  is empty"<<endl;return 0;}//read paradouble markerlength=0.105;cv::Mat intrinsics = (Mat_<double>(3, 3) <<420.019, 0.0, 330.8676,0.0,419.6044, 217.8731,0.0, 0.0, 1.0);cv::Mat distCoeffs=(cv::Mat_<double>(4, 1) <<  -0.3549, 0.1151, -0.0035, -0.0029);cv::Mat  imageCopy;m_image.copyTo(imageCopy);cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);std::vector<int> ids;std::vector<std::vector<cv::Point2f>> corners;cv::aruco::detectMarkers(m_image, dictionary, corners, ids);//检测靶标// if at least one marker detectedif (ids.size() > 0) {cv::aruco::drawDetectedMarkers(imageCopy, corners, ids);//绘制检测到的靶标的框for(unsigned int i=0; i<ids.size(); i++){std::vector<cv::Vec3d> rvecs, tvecs;cv::aruco::estimatePoseSingleMarkers(corners[i], markerlength, intrinsics, distCoeffs, rvecs, tvecs);//求解旋转矩阵rvecs和平移矩阵tvecscv::aruco::drawAxis(imageCopy,intrinsics,distCoeffs, rvecs[i], tvecs[i], 0.1);//3.rotaion vector to eulerAnglescv::Mat rmat;Rodrigues(rvecs[i], rmat);Eigen::Matrix3d rotation_matrix3d;cv2eigen(rmat,rotation_matrix3d);Eigen::Vector3d eulerAngle = rotation_matrix3d.eulerAngles(0,1,2);//(0,1,2)表示分别绕XYZ轴顺序,即 顺序,逆时针为正cout<<"pitch "<<eulerAngle.x()<<"yaw "<<eulerAngle.y()<<"roll"<<eulerAngle.z()<<endl;cout<<"x= "<<tvecs[i][0]<<"y="<<tvecs[i][1]<<"z="<<tvecs[i][2]<<endl;}}cv::imshow("out", imageCopy);cv::waitKey();return 0;
}

其中
The parameters of detectMarkers are:
The first parameter is the image where the markers are going to be detected.
The second parameter is the dictionary object, in this case one of the predefined dictionaries (DICT_6X6_250).
The detected markers are stored in the markerCorners and markerIds structures:
markerCorners is the list of corners of the detected markers. For each marker, its four corners are returned in their original order (which is clockwise starting with top left). So, the first corner is the top left corner, followed by the top right, bottom right and bottom left.
markerIds is the list of ids of each of the detected markers in markerCorners. Note that the returned markerCorners and markerIds vectors have the same sizes.
The fourth parameter is the object of type DetectionParameters. This object includes all the parameters that can be customized during the detection process. This parameters are commented in detail in the next section.
The final parameter, rejectedCandidates, is a returned list of marker candidates, i.e. those squares that have been found but they do not present a valid codification. Each candidate is also defined by its four corners, and its format is the same than the markerCorners parameter. This parameter can be omitted and is only useful for debugging purposes and for ‘refind’ strategies (see refineDetectedMarkers() ).

5实验效果

输出

pitch 3.12894yaw -0.0187251roll-1.5281
x= -0.011554y=-0.0038433z=0.17224

在这里插入图片描述

6.生成多个marker组成的board

参考http://www.pianshen.com/article/2639341324/

#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "opencv2/core/core.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>using namespace std;
using namespace cv;int main()
{int markersX = 5;//X轴上标记的数量int markersY = 5;//Y轴上标记的数量   本例生成5x5的棋盘int markerLength = 100;//标记的长度,单位是像素int markerSeparation = 20;//每个标记之间的间隔,单位像素int dictionaryId = cv::aruco::DICT_4X4_50;//生成标记的字典IDint margins = markerSeparation;//标记与边界之间的间隔int borderBits = 1;//标记的边界所占的bit位数bool showImage = true;Size imageSize;imageSize.width = markersX * (markerLength + markerSeparation) - markerSeparation + 2 * margins;imageSize.height =markersY * (markerLength + markerSeparation) - markerSeparation + 2 * margins;Ptr<aruco::Dictionary> dictionary =aruco::getPredefinedDictionary(aruco::PREDEFINED_DICTIONARY_NAME(dictionaryId));Ptr<aruco::GridBoard> board = aruco::GridBoard::create(markersX, markersY, float(markerLength),float(markerSeparation), dictionary);// show created boardMat boardImage;board->draw(imageSize, boardImage, margins, borderBits);if (showImage) {imwrite("./aruco_tag_board.png",boardImage);imshow("board", boardImage);waitKey(0);}return 0;
}

参考文献
https://blog.csdn.net/A_L_A_N/article/details/83657878

这篇关于视觉标记定位aruco使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507197

相关文章

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客