视觉标记定位aruco使用

2023-12-18 05:32

本文主要是介绍视觉标记定位aruco使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://lightsail.blog.csdn.net/article/details/102752780

视觉标记定位aruco使用

沧海飞帆 2019-10-26 11:05:51 2657 收藏 14

分类专栏: SLAM 文章标签: opencv aruco定位

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/ktigerhero3/article/details/102752780

版权

本文的目的是实现生成一张marker broad图片,告诉标记检测程序tag在真实世界中的实际大小。
检测成功后得到marker的id,四个角点坐标,marker到相机的平移和旋转。

1.下载安装参考

opencv 中的aruco源码下载要到下面地址
opencv 中的aruco源码下载
https://github.com/opencv/opencv_contrib/tree/master/modules/aruco
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0

2.生成单个marker图片

程序如下

#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "opencv2/core/core.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>using namespace std;
using namespace cv;int main()
{cv::Mat markerImage;cv::Ptr<cv::aruco::Dictionary> dictionary = 	cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);cv::aruco::drawMarker(dictionary, 23, 200, markerImage, 1);imwrite("./aruco_tag.png",markerImage);imshow("test", markerImage);//显示markerwaitKey();return 0;
}

cv::aruco::drawMarker
第一个参数是之前创建的Dictionary对象。
第二个参数是marker的id,在这个例子中选择的是字典DICT_6X6_250 的第23个marker。注意到每个字典是由不同数目的Marker组成的,在这个例子中的字典中,有效的Id数字范围是0到249。不在有效区间的特定id将会产生异常。
三个参数,200,是输出Marker图像的大小。在这个例子中,输出的图像将是200x200像素大小。注意到这一参数需要满足能够存储特定字典 的所有位。举例来说,你不能为6x6大小的marker生成一个5x5图像(这还没有考虑到Marker的边界)。除此之外,为了避免变形,这一参数最好和位数+边界的大小成正比,或者至少要比marker的大小大得多(如这个例子中的200),这样变形就不显著了
第四个参数是输出的图像。
最终,最后一个参数是一个可选的参数,它指定了Marer黑色边界的大小。这一大小与位数数目成正比。例如,值为2意味着边界的宽度将会是2的倍数。默认的值为1。

3 . 打印并标定相机内参

注意,打印的时候如果用像素为200200的图像打印,实际打印大小为20cm20cm,那么一个像素对应1毫米。
内参标定就不介绍了,此实验使用内参为

intrinsic_matrix: !!opencv-matrixrows: 3cols: 3dt: ddata: [ 420.019, 0., 330.8676, 0.,419.6044, 217.8731, 0., 0., 1. ]
distortion_vector: !!opencv-matrixrows: 1cols: 4dt: ddata: [ -0.3549, 0.1151, -0.0035, -0.0029 ]

的相机拍出来的图像如下
在这里插入图片描述

4.检测marker并得到id和相对位移

确定好实际打印出来的marker的边长和内参就可以检测并计算了。
其中markerlength表示marker的实际物理长度。
使用上面的图像和内参程序如下

#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "opencv2/core/core.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Geometry>
#include <opencv2/core/eigen.hpp>using namespace std;
using namespace cv;int main()
{cv::Mat m_image=imread("./mark.jpg");if(m_image.empty()){cout<<"m_image  is empty"<<endl;return 0;}//read paradouble markerlength=0.105;cv::Mat intrinsics = (Mat_<double>(3, 3) <<420.019, 0.0, 330.8676,0.0,419.6044, 217.8731,0.0, 0.0, 1.0);cv::Mat distCoeffs=(cv::Mat_<double>(4, 1) <<  -0.3549, 0.1151, -0.0035, -0.0029);cv::Mat  imageCopy;m_image.copyTo(imageCopy);cv::Ptr<cv::aruco::Dictionary> dictionary = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);std::vector<int> ids;std::vector<std::vector<cv::Point2f>> corners;cv::aruco::detectMarkers(m_image, dictionary, corners, ids);//检测靶标// if at least one marker detectedif (ids.size() > 0) {cv::aruco::drawDetectedMarkers(imageCopy, corners, ids);//绘制检测到的靶标的框for(unsigned int i=0; i<ids.size(); i++){std::vector<cv::Vec3d> rvecs, tvecs;cv::aruco::estimatePoseSingleMarkers(corners[i], markerlength, intrinsics, distCoeffs, rvecs, tvecs);//求解旋转矩阵rvecs和平移矩阵tvecscv::aruco::drawAxis(imageCopy,intrinsics,distCoeffs, rvecs[i], tvecs[i], 0.1);//3.rotaion vector to eulerAnglescv::Mat rmat;Rodrigues(rvecs[i], rmat);Eigen::Matrix3d rotation_matrix3d;cv2eigen(rmat,rotation_matrix3d);Eigen::Vector3d eulerAngle = rotation_matrix3d.eulerAngles(0,1,2);//(0,1,2)表示分别绕XYZ轴顺序,即 顺序,逆时针为正cout<<"pitch "<<eulerAngle.x()<<"yaw "<<eulerAngle.y()<<"roll"<<eulerAngle.z()<<endl;cout<<"x= "<<tvecs[i][0]<<"y="<<tvecs[i][1]<<"z="<<tvecs[i][2]<<endl;}}cv::imshow("out", imageCopy);cv::waitKey();return 0;
}

其中
The parameters of detectMarkers are:
The first parameter is the image where the markers are going to be detected.
The second parameter is the dictionary object, in this case one of the predefined dictionaries (DICT_6X6_250).
The detected markers are stored in the markerCorners and markerIds structures:
markerCorners is the list of corners of the detected markers. For each marker, its four corners are returned in their original order (which is clockwise starting with top left). So, the first corner is the top left corner, followed by the top right, bottom right and bottom left.
markerIds is the list of ids of each of the detected markers in markerCorners. Note that the returned markerCorners and markerIds vectors have the same sizes.
The fourth parameter is the object of type DetectionParameters. This object includes all the parameters that can be customized during the detection process. This parameters are commented in detail in the next section.
The final parameter, rejectedCandidates, is a returned list of marker candidates, i.e. those squares that have been found but they do not present a valid codification. Each candidate is also defined by its four corners, and its format is the same than the markerCorners parameter. This parameter can be omitted and is only useful for debugging purposes and for ‘refind’ strategies (see refineDetectedMarkers() ).

5实验效果

输出

pitch 3.12894yaw -0.0187251roll-1.5281
x= -0.011554y=-0.0038433z=0.17224

在这里插入图片描述

6.生成多个marker组成的board

参考http://www.pianshen.com/article/2639341324/

#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include "opencv2/core/core.hpp"
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>using namespace std;
using namespace cv;int main()
{int markersX = 5;//X轴上标记的数量int markersY = 5;//Y轴上标记的数量   本例生成5x5的棋盘int markerLength = 100;//标记的长度,单位是像素int markerSeparation = 20;//每个标记之间的间隔,单位像素int dictionaryId = cv::aruco::DICT_4X4_50;//生成标记的字典IDint margins = markerSeparation;//标记与边界之间的间隔int borderBits = 1;//标记的边界所占的bit位数bool showImage = true;Size imageSize;imageSize.width = markersX * (markerLength + markerSeparation) - markerSeparation + 2 * margins;imageSize.height =markersY * (markerLength + markerSeparation) - markerSeparation + 2 * margins;Ptr<aruco::Dictionary> dictionary =aruco::getPredefinedDictionary(aruco::PREDEFINED_DICTIONARY_NAME(dictionaryId));Ptr<aruco::GridBoard> board = aruco::GridBoard::create(markersX, markersY, float(markerLength),float(markerSeparation), dictionary);// show created boardMat boardImage;board->draw(imageSize, boardImage, margins, borderBits);if (showImage) {imwrite("./aruco_tag_board.png",boardImage);imshow("board", boardImage);waitKey(0);}return 0;
}

参考文献
https://blog.csdn.net/A_L_A_N/article/details/83657878

这篇关于视觉标记定位aruco使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507197

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud