Mapreduce小试牛刀(1)

2023-12-18 05:30
文章标签 mapreduce 小试牛刀

本文主要是介绍Mapreduce小试牛刀(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.与hdfs一样,mapreduce基于hadoop框架,所以我们首先要启动hadoop服务器

---------------------------------------------------------------------------------------------------------------------------------

2.修改hadoop-env.sh位置JAVA_HOME配置,在JAVA_HOME前面加上export,重启主虚拟机,最好也把另外两个节点同位置的该配置文件改了

如果这里不配置好JAVA_HOME变量,那么在后续运行时会出现127号报错,显示未找到JAVA_HOME

---------------------------------------------------------------------------------------------------------------------------------

3.修改内存

修改yarn-site.xml文件中的内存大小。一般来说,第一次都分配的1024mb,但是在进行mapreduce运算时,会要求至少1536mb内存。但是不要直接设置为1536mb,不要忘记操作系统也会占用内存!但是也不要设置的太大,以免把本机下爆

---------------------------------------------------------------------------------------------------------------------------------

4.示例1

本地文档单词统计

1.在某一文件夹下,编辑一个txt文件

vi wdtest.txt

2.上传到某一hdfs的目录下

hdfs dfs -put wdtest.txt /input

3.利用hadoop自带的包,进行单词统计

hadoop jar /home/hadoop/hadoop-3.3.4/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.4.jar wordcount /input /output

系统会新建一个叫做ouput的目录收录统计结果(part-r-00000文件)

4.利用cat命令查看统计结果

hadoop fs -cat /output/part-r-00000

---------------------------------------------------------------------------------------------------------------------------------

5.示例2(Hadoop Streaming统计总的字节数)

输入如下代码,结果会在output2目录下显示

mapred streaming \-input /input \                                        -output /output2 \                                  -mapper /bin/cat \-reducer /usr/bin/wc

注意:要连续、完整输入这段代码,输完后会自动开始计算作业!

输入代码,查看统计结果:

hadoop fs -cat /output2/part-00000

分别为行数、单词数、字节数

这里采用了Hadoop Streaming工具集。Hadoop Streaming是Hadoop新推出的一个工具集。这个工具集并不是提供流式计算的功能,而是允许以命令行的方式代替千篇一律的Driver代码。但是与第一种方法相比,它并不能统计出各个单词出现的次数

这篇关于Mapreduce小试牛刀(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507186

相关文章

【Hadoop|MapReduce篇】MapReduce概述

1. MapReduce定义 MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。 MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。 2. MapReduce优缺点 2.1 优点 MapReduce易于编程 它简单的实现一些接口,就可以完成一个分布式

MapReduce算法 – 反转排序(Order Inversion)

译者注:在刚开始翻译的时候,我将Order Inversion按照字面意思翻译成“反序”或者“倒序”,但是翻译完整篇文章之后,我感觉到,将Order Inversion翻译成反序模式是不恰当的,根据本文的内容,很显然,Inversion并非是将顺序倒排的意思,而是如同Spring的IOC一样,表明的是一种控制权的反转。Spring将对象的实例化责任从业务代码反转给了框架,而在本文的模式中,在map

MutationObserver小试牛刀

参考文档 https://developer.mozilla.org/zh-CN/docs/Web/API/MutationObserver 简介 MutationObserver 接口提供了监视对 DOM 树所做更改的能力。 MutationObserver() 构造函数——是 MutationObserver 接口内容的一部分——创建并返回一个新的观察器,它会在触发指定 DOM 事件时,

圆形缓冲区-MapReduce中的

这篇文章来自一个读者在面试过程中的一个问题,Hadoop在shuffle过程中使用了一个数据结构-环形缓冲区。 环形队列是在实际编程极为有用的数据结构,它是一个首尾相连的FIFO的数据结构,采用数组的线性空间,数据组织简单。能很快知道队列是否满为空。能以很快速度的来存取数据。 因为有简单高效的原因,甚至在硬件都实现了环形队列。 环形队列广泛用于网络数据收发,和不同程序间数据交换(比如内核与应用

【硬刚Hadoop】HADOOP MAPREDUCE(11):Join应用

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的Hadoop部分补充。 1 Reduce Join Map端的主要工作:为来自不同表或文件的key/value对,打标签以区别不同来源的记录。然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出。 Reduce端的主要工作:在Reduce端以连接字段作为key的分组已经完成,我们只需要在

【硬刚Hadoop】HADOOP MAPREDUCE(10):OutputFormat数据输出

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的Hadoop部分补充。 1 OutputFormat接口实现类 2 自定义OutputFormat 3 自定义OutputFormat案例实操 1.需求 过滤输入的log日志,包含atguigu的网站输出到e:/atguigu.log,不包含atguigu的网站输出到e:/o

【硬刚Hadoop】HADOOP MAPREDUCE(9):MapReduce内核源码解析(2)ReduceTask工作机制

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的Hadoop部分补充。 1.ReduceTask工作机制 ReduceTask工作机制,如图4-19所示。 图4-19 ReduceTask工作机制 (1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中

【硬刚Hadoop】HADOOP MAPREDUCE(8):MapReduce内核源码解析(1)MapTask工作机制

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的Hadoop部分补充。 MapTask工作机制 MapTask工作机制如图4-12所示。 图4-12  MapTask工作机制 (1)Read阶段:MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。 (2)Map阶段:该节点主要是将解析出

【硬刚Hadoop】HADOOP MAPREDUCE(7):Shuffle机制(3)

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的Hadoop部分补充。 7 Combiner合并 (6)自定义Combiner实现步骤 (a)自定义一个Combiner继承Reducer,重写Reduce方法 public class WordcountCombiner extends Reducer<Text, IntWritable, Text,

【硬刚Hadoop】HADOOP MAPREDUCE(6):Shuffle机制(2)

本文是对《【硬刚大数据之学习路线篇】从零到大数据专家的学习指南(全面升级版)》的Hadoop部分补充。 4 WritableComparable排序 1.排序的分类 2.自定义排序WritableComparable (1)原理分析 bean对象做为key传输,需要实现WritableComp