python下使用aruco标记进进行三维姿势估计(转载)

2023-12-18 04:48

本文主要是介绍python下使用aruco标记进进行三维姿势估计(转载),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://www.it610.com/article/1291934151255072768.htm

python下使用aruco标记进进行三维姿势估计

  • 视觉机器人
  • python3
  • aruco
  • python
  • opencv
  • 计算机视觉
  • aruco

python下使用aruco标记进进行三维姿势估计_第1张图片

ArUco标记

python下使用aruco标记进进行三维姿势估计_第2张图片

首先什么是aruco标记呢?

aruco标记是可用于摄像机姿态估计的二进制方形基准标记。它的主要优点是检测简单、快速,并且具有很强的鲁棒性。ArUco 标记是由宽黑色边框和确定其标识符(id)的内部二进制矩阵组成的正方形标记。aruco标记的黑色边框有助于其在图像中的快速检测,内部二进制编码用于识别标记和提供错误检测和纠正。aruco标记尺寸的大小决定内部矩阵的大小,例如尺寸为 4x4 的标记由 16 位二进制数组成。

通俗地说,aruco标记其实就是一种编码,就和我们日常生活中的二维码是相似的,只不过由于编码方式的不同,导致它们存储信息的方式、容量等等有所差异,所以在应用层次上也会有所不同。由于单个aruco标记就可以提供足够的对应关系,例如有四个明显的角点及内部的二进制编码,所以aruco标记被广泛用来增加从二维世界映射到三维世界时的信息量,便于发现二维世界与三维世界之间的投影关系,从而实现姿态估计、相机矫正等等应用。

OpenCV中的ArUco模块包括了对aruco标记的创建和检测,以及将aruco标记用于姿势估计和相机矫正等应用的相关API,同时还提供了标记板等等。本次笔记中主要先整理aruco标记的创建与检测。

首先我们创建aruco标记时,需要先指定一个字典,这个字典表示的是创建出来的aruco标记具有怎样的尺寸、怎样的编码等等内容,我们使用APIgetPredefinedDictionary()来声明我们使用的字典。在OpenCV中,提供了多种预定义字典,我们可以通过PREDEFINED_DICTIONARY_NAME来查看有哪些预定义字典。而且字典名称表示了该字典的aruco标记数量和尺寸,例如DICT_7X7_50表示一个包含了50种7x7位标记的字典。


ArUco标记生成器

在线aruco标记生成器:http://aruco.dgut.top/

(备用):https://chev.me/arucogen/

python下使用aruco标记进进行三维姿势估计_第3张图片

在OpenCV中生成ArUco标记

opencv-python生成aruco标记

确定好我们需要的字典后,就可以通过APIdrawMarker()来绘制出aruco标记,其参数含义如下:

import cv2
import numpy as np
# 生成aruco标记
# 加载预定义的字典
dictionary = cv2.aruco.Dictionary_get(cv2.aruco.DICT_6X6_250)# 生成标记
markerImage = np.zeros((200, 200), dtype=np.uint8)
markerImage = cv2.aruco.drawMarker(dictionary, 22, 200, markerImage, 1)
cv2.imwrite("marker22.png", markerImage)

opencv的aruco模块共有25个预定义的标记词典。每个词典中所有的Aruco标记均包含相同数量的块或位(例如4×4、5×5、6×6或7×7),且每个词典中Aruco标记的数量固定(例如50、100、250或1000)。

cv2.aruco.Dictionary_get()函数会加载cv2.aruco.DICT_6X6_250包含250个标记的字典,其中每个标记都是6×6位二进制模式

cv2.aruco.drawMarker(dictionary, 22, 200, markerImage, 1)中的第二个参数22是aruco的标记id(0~249),第三个参数决定生成的标记的大小,在上面的示例中,它将生成200×200像素的图像,第四个参数表示将要存储aruco标记的对象(上面的markerImage),最后,第五个参数是边界宽度参数,它决定应将多少位(块)作为边界添加到生成的二进制图案中。

执行后将会生成这样的标记:标记id分别是22

python下使用aruco标记进进行三维姿势估计_第4张图片

展开所支持的标记字典


展开查看的内容;
DICT_4X4_50 
Python: cv.aruco.DICT_4X4_50
DICT_4X4_100 
Python: cv.aruco.DICT_4X4_100
DICT_4X4_250 
Python: cv.aruco.DICT_4X4_250
DICT_4X4_1000 
Python: cv.aruco.DICT_4X4_1000
DICT_5X5_50 
Python: cv.aruco.DICT_5X5_50
DICT_5X5_100 
Python: cv.aruco.DICT_5X5_100
DICT_5X5_250 
Python: cv.aruco.DICT_5X5_250
DICT_5X5_1000 
Python: cv.aruco.DICT_5X5_1000
DICT_6X6_50 
Python: cv.aruco.DICT_6X6_50
DICT_6X6_100 
Python: cv.aruco.DICT_6X6_100
DICT_6X6_250 
Python: cv.aruco.DICT_6X6_250
DICT_6X6_1000 
Python: cv.aruco.DICT_6X6_1000
DICT_7X7_50 
Python: cv.aruco.DICT_7X7_50
DICT_7X7_100 
Python: cv.aruco.DICT_7X7_100
DICT_7X7_250 
Python: cv.aruco.DICT_7X7_250
DICT_7X7_1000 
Python: cv.aruco.DICT_7X7_1000
DICT_ARUCO_ORIGINAL 
Python: cv.aruco.DICT_ARUCO_ORIGINAL
DICT_APRILTAG_16h5 
Python: cv.aruco.DICT_APRILTAG_16h5
4x4 bits, minimum hamming distance between any two codes = 5, 30 codes

批量生成aruco标记

import cv2
import numpy as np
# 生成aruco标记
# 加载预定义的字典
dictionary = cv2.aruco.Dictionary_get(cv2.aruco.DICT_6X6_250)# 生成标记
markerImage = np.zeros((200, 200), dtype=np.uint8)
for i in range(30):markerImage = cv2.aruco.drawMarker(dictionary, i, 200, markerImage, 1);firename='armark/'+str(i)+'.png'cv2.imwrite(firename, markerImage);

在armark文件夹下会生成一系列的6*6 aruco标记

python下使用aruco标记进进行三维姿势估计_第5张图片


Aruco标记的检测和定位

静态检测

在环境中图像检测Aruco标记,环境中有7个标记

python下使用aruco标记进进行三维姿势估计_第6张图片

import numpy as np
import time
import cv2
import cv2.aruco as aruco
#读取图片
frame=cv2.imread('IMG_3739.jpg')
#调整图片大小
frame=cv2.resize(frame,None,fx=0.2,fy=0.2,interpolation=cv2.INTER_CUBIC)
#灰度话
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#设置预定义的字典
aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250)
#使用默认值初始化检测器参数
parameters =  aruco.DetectorParameters_create()
#使用aruco.detectMarkers()函数可以检测到marker,返回ID和标志板的4个角点坐标
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray,aruco_dict,parameters=parameters)
#画出标志位置
aruco.drawDetectedMarkers(frame, corners,ids)cv2.imshow("frame",frame)
cv2.waitKey(0)
cv2.destroyAllWindows()

对于每次成功检测到标记,将按从左上,右上,右下和左下的顺序检测标记的四个角点。在C ++中,将这4个检测到的角点存储为点矢量,并将图像中的多个标记一起存储在点矢量容器中。在Python中,它们存储为Numpy 数组。

detectMarkers()函数用于检测和确定标记角点的位置。

  • 第一个参数image是带有标记的场景图像。
  • 第二个参数dictionary是用于生成标记的字典。成功检测到的标记将存储在markerCorners中,其ID存储在markerIds中。先前初始化的DetectorParameters对象作为传递参数。
  • 第三个参数parametersDetectionParameters 类的对象,该对象包括在检测过程中可以自定义的所有参数;
  • 返回参数corners:检测到的aruco标记的角点列表,对于每个标记,其四个角点均按其原始顺序返回(从右上角开始顺时针旋转),第一个角是右上角,然后是右下角,左下角和左上角。
  • 返回ids:检测到的每个标记的 id,需要注意的是第三个参数和第四个参数具有相同的大小;
  • 返回参数rejectedImgPoints:抛弃的候选标记列表,即检测到的、但未提供有效编码的正方形。每个候选标记也由其四个角定义,其格式与第三个参数相同,该参数若无特殊要求可以省略。
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray,aruco_dict,parameters=parameters)

当我们检测到aruco标签之后,为了方便观察,我们需要进行可视化操作,把标签标记出来:使用drawDetectedMarkers()这个API来绘制检测到的aruco标记,其参数含义如下:

  • 参数image: 是将绘制标记的输入 / 输出图像(通常就是检测到标记的图像)
  • 参数corners:检测到的aruco标记的角点列表
  • 参数ids:检测到的每个标记对应到其所属字典中的id,可选(如果未提供)不会绘制ID。
  • 参数borderColor:绘制标记外框的颜色,其余颜色(文本颜色和第一个角颜色)将基于该颜色进行计算,以提高可视化效果。
  • 无返回值
aruco.drawDetectedMarkers(image, corners,ids,borderColor)

效果演示:

python下使用aruco标记进进行三维姿势估计_第7张图片

python下使用aruco标记进进行三维姿势估计_第8张图片
python下使用aruco标记进进行三维姿势估计_第9张图片
python下使用aruco标记进进行三维姿势估计_第10张图片

动态检测

利用摄像头进行一个实时动态监测aruco标记并且估计姿势,摄像头的内参需要提前标定,如何标定请看我另一篇文章

import numpy as np
import time
import cv2
import cv2.aruco as aruco# mtx = np.array([
#         [2946.48,       0, 1980.53],
#         [      0, 2945.41, 1129.25],
#         [      0,       0,       1],
#         ])
# #我的手机拍棋盘的时候图片大小是 4000 x 2250
# #ip摄像头拍视频的时候设置的是 1920 x 1080,长宽比是一样的,
# #ip摄像头设置分辨率的时候注意一下
#
#
# dist = np.array( [0.226317, -1.21478, 0.00170689, -0.000334551, 1.9892] )#相机纠正参数# dist=np.array(([[-0.51328742,  0.33232725 , 0.01683581 ,-0.00078608, -0.1159959]]))
#
# mtx=np.array([[464.73554153, 0.00000000e+00 ,323.989155],
#  [  0.,         476.72971528 ,210.92028],
#  [  0.,           0.,           1.        ]])
dist=np.array(([[-0.58650416 , 0.59103816, -0.00443272 , 0.00357844 ,-0.27203275]]))
newcameramtx=np.array([[189.076828   ,  0.    ,     361.20126638],[  0 ,2.01627296e+04 ,4.52759577e+02],[0, 0, 1]])
mtx=np.array([[398.12724231  , 0.      ,   304.35638757],[  0.       ,  345.38259888, 282.49861858],[  0.,           0.,           1.        ]])cap = cv2.VideoCapture(0)font = cv2.FONT_HERSHEY_SIMPLEX #font for displaying text (below)#num = 0
while True:ret, frame = cap.read()h1, w1 = frame.shape[:2]# 读取摄像头画面# 纠正畸变newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (h1, w1), 0, (h1, w1))dst1 = cv2.undistort(frame, mtx, dist, None, newcameramtx)x, y, w1, h1 = roidst1 = dst1[y:y + h1, x:x + w1]frame=dst1gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250)parameters =  aruco.DetectorParameters_create()dst1 = cv2.undistort(frame, mtx, dist, None, newcameramtx)'''detectMarkers(...)detectMarkers(image, dictionary[, corners[, ids[, parameters[, rejectedImgPoints]]]]) -> corners, ids, rejectedImgPoints'''#使用aruco.detectMarkers()函数可以检测到marker,返回ID和标志板的4个角点坐标corners, ids, rejectedImgPoints = aruco.detectMarkers(gray,aruco_dict,parameters=parameters)#    如果找不打idif ids is not None:rvec, tvec, _ = aruco.estimatePoseSingleMarkers(corners, 0.05, mtx, dist)# 估计每个标记的姿态并返回值rvet和tvec ---不同# from camera coeficcients(rvec-tvec).any() # get rid of that nasty numpy value array error#        aruco.drawAxis(frame, mtx, dist, rvec, tvec, 0.1) #绘制轴
#        aruco.drawDetectedMarkers(frame, corners) #在标记周围画一个正方形for i in range(rvec.shape[0]):aruco.drawAxis(frame, mtx, dist, rvec[i, :, :], tvec[i, :, :], 0.03)aruco.drawDetectedMarkers(frame, corners)###### DRAW ID #####cv2.putText(frame, "Id: " + str(ids), (0,64), font, 1, (0,255,0),2,cv2.LINE_AA)else:##### DRAW "NO IDS" #####cv2.putText(frame, "No Ids", (0,64), font, 1, (0,255,0),2,cv2.LINE_AA)# 显示结果框架cv2.imshow("frame",frame)key = cv2.waitKey(1)if key == 27:         # 按esc键退出print('esc break...')cap.release()cv2.destroyAllWindows()breakif key == ord(' '):   # 按空格键保存
#        num = num + 1
#        filename = "frames_%s.jpg" % num  # 保存一张图像filename = str(time.time())[:10] + ".jpg"cv2.imwrite(filename, frame)

效果

python下使用aruco标记进进行三维姿势估计_第11张图片

python下使用aruco标记进进行三维姿势估计_第12张图片

python下使用aruco标记进进行三维姿势估计_第13张图片

python下使用aruco标记进进行三维姿势估计_第14张图片

博客地址:https://blog.dgut.top/2020/07/15/python-aruco/

本文参考:

1.https://blog.csdn.net/sinat_17456165/article/details/105649131

2.https://www.learnopencv.com/augmented-reality-using-aruco-markers-in-opencv-c-python/

这篇关于python下使用aruco标记进进行三维姿势估计(转载)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507095

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本