python下使用aruco标记进进行三维姿势估计(转载)

2023-12-18 04:48

本文主要是介绍python下使用aruco标记进进行三维姿势估计(转载),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:https://www.it610.com/article/1291934151255072768.htm

python下使用aruco标记进进行三维姿势估计

  • 视觉机器人
  • python3
  • aruco
  • python
  • opencv
  • 计算机视觉
  • aruco

python下使用aruco标记进进行三维姿势估计_第1张图片

ArUco标记

python下使用aruco标记进进行三维姿势估计_第2张图片

首先什么是aruco标记呢?

aruco标记是可用于摄像机姿态估计的二进制方形基准标记。它的主要优点是检测简单、快速,并且具有很强的鲁棒性。ArUco 标记是由宽黑色边框和确定其标识符(id)的内部二进制矩阵组成的正方形标记。aruco标记的黑色边框有助于其在图像中的快速检测,内部二进制编码用于识别标记和提供错误检测和纠正。aruco标记尺寸的大小决定内部矩阵的大小,例如尺寸为 4x4 的标记由 16 位二进制数组成。

通俗地说,aruco标记其实就是一种编码,就和我们日常生活中的二维码是相似的,只不过由于编码方式的不同,导致它们存储信息的方式、容量等等有所差异,所以在应用层次上也会有所不同。由于单个aruco标记就可以提供足够的对应关系,例如有四个明显的角点及内部的二进制编码,所以aruco标记被广泛用来增加从二维世界映射到三维世界时的信息量,便于发现二维世界与三维世界之间的投影关系,从而实现姿态估计、相机矫正等等应用。

OpenCV中的ArUco模块包括了对aruco标记的创建和检测,以及将aruco标记用于姿势估计和相机矫正等应用的相关API,同时还提供了标记板等等。本次笔记中主要先整理aruco标记的创建与检测。

首先我们创建aruco标记时,需要先指定一个字典,这个字典表示的是创建出来的aruco标记具有怎样的尺寸、怎样的编码等等内容,我们使用APIgetPredefinedDictionary()来声明我们使用的字典。在OpenCV中,提供了多种预定义字典,我们可以通过PREDEFINED_DICTIONARY_NAME来查看有哪些预定义字典。而且字典名称表示了该字典的aruco标记数量和尺寸,例如DICT_7X7_50表示一个包含了50种7x7位标记的字典。


ArUco标记生成器

在线aruco标记生成器:http://aruco.dgut.top/

(备用):https://chev.me/arucogen/

python下使用aruco标记进进行三维姿势估计_第3张图片

在OpenCV中生成ArUco标记

opencv-python生成aruco标记

确定好我们需要的字典后,就可以通过APIdrawMarker()来绘制出aruco标记,其参数含义如下:

import cv2
import numpy as np
# 生成aruco标记
# 加载预定义的字典
dictionary = cv2.aruco.Dictionary_get(cv2.aruco.DICT_6X6_250)# 生成标记
markerImage = np.zeros((200, 200), dtype=np.uint8)
markerImage = cv2.aruco.drawMarker(dictionary, 22, 200, markerImage, 1)
cv2.imwrite("marker22.png", markerImage)

opencv的aruco模块共有25个预定义的标记词典。每个词典中所有的Aruco标记均包含相同数量的块或位(例如4×4、5×5、6×6或7×7),且每个词典中Aruco标记的数量固定(例如50、100、250或1000)。

cv2.aruco.Dictionary_get()函数会加载cv2.aruco.DICT_6X6_250包含250个标记的字典,其中每个标记都是6×6位二进制模式

cv2.aruco.drawMarker(dictionary, 22, 200, markerImage, 1)中的第二个参数22是aruco的标记id(0~249),第三个参数决定生成的标记的大小,在上面的示例中,它将生成200×200像素的图像,第四个参数表示将要存储aruco标记的对象(上面的markerImage),最后,第五个参数是边界宽度参数,它决定应将多少位(块)作为边界添加到生成的二进制图案中。

执行后将会生成这样的标记:标记id分别是22

python下使用aruco标记进进行三维姿势估计_第4张图片

展开所支持的标记字典


展开查看的内容;
DICT_4X4_50 
Python: cv.aruco.DICT_4X4_50
DICT_4X4_100 
Python: cv.aruco.DICT_4X4_100
DICT_4X4_250 
Python: cv.aruco.DICT_4X4_250
DICT_4X4_1000 
Python: cv.aruco.DICT_4X4_1000
DICT_5X5_50 
Python: cv.aruco.DICT_5X5_50
DICT_5X5_100 
Python: cv.aruco.DICT_5X5_100
DICT_5X5_250 
Python: cv.aruco.DICT_5X5_250
DICT_5X5_1000 
Python: cv.aruco.DICT_5X5_1000
DICT_6X6_50 
Python: cv.aruco.DICT_6X6_50
DICT_6X6_100 
Python: cv.aruco.DICT_6X6_100
DICT_6X6_250 
Python: cv.aruco.DICT_6X6_250
DICT_6X6_1000 
Python: cv.aruco.DICT_6X6_1000
DICT_7X7_50 
Python: cv.aruco.DICT_7X7_50
DICT_7X7_100 
Python: cv.aruco.DICT_7X7_100
DICT_7X7_250 
Python: cv.aruco.DICT_7X7_250
DICT_7X7_1000 
Python: cv.aruco.DICT_7X7_1000
DICT_ARUCO_ORIGINAL 
Python: cv.aruco.DICT_ARUCO_ORIGINAL
DICT_APRILTAG_16h5 
Python: cv.aruco.DICT_APRILTAG_16h5
4x4 bits, minimum hamming distance between any two codes = 5, 30 codes

批量生成aruco标记

import cv2
import numpy as np
# 生成aruco标记
# 加载预定义的字典
dictionary = cv2.aruco.Dictionary_get(cv2.aruco.DICT_6X6_250)# 生成标记
markerImage = np.zeros((200, 200), dtype=np.uint8)
for i in range(30):markerImage = cv2.aruco.drawMarker(dictionary, i, 200, markerImage, 1);firename='armark/'+str(i)+'.png'cv2.imwrite(firename, markerImage);

在armark文件夹下会生成一系列的6*6 aruco标记

python下使用aruco标记进进行三维姿势估计_第5张图片


Aruco标记的检测和定位

静态检测

在环境中图像检测Aruco标记,环境中有7个标记

python下使用aruco标记进进行三维姿势估计_第6张图片

import numpy as np
import time
import cv2
import cv2.aruco as aruco
#读取图片
frame=cv2.imread('IMG_3739.jpg')
#调整图片大小
frame=cv2.resize(frame,None,fx=0.2,fy=0.2,interpolation=cv2.INTER_CUBIC)
#灰度话
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#设置预定义的字典
aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250)
#使用默认值初始化检测器参数
parameters =  aruco.DetectorParameters_create()
#使用aruco.detectMarkers()函数可以检测到marker,返回ID和标志板的4个角点坐标
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray,aruco_dict,parameters=parameters)
#画出标志位置
aruco.drawDetectedMarkers(frame, corners,ids)cv2.imshow("frame",frame)
cv2.waitKey(0)
cv2.destroyAllWindows()

对于每次成功检测到标记,将按从左上,右上,右下和左下的顺序检测标记的四个角点。在C ++中,将这4个检测到的角点存储为点矢量,并将图像中的多个标记一起存储在点矢量容器中。在Python中,它们存储为Numpy 数组。

detectMarkers()函数用于检测和确定标记角点的位置。

  • 第一个参数image是带有标记的场景图像。
  • 第二个参数dictionary是用于生成标记的字典。成功检测到的标记将存储在markerCorners中,其ID存储在markerIds中。先前初始化的DetectorParameters对象作为传递参数。
  • 第三个参数parametersDetectionParameters 类的对象,该对象包括在检测过程中可以自定义的所有参数;
  • 返回参数corners:检测到的aruco标记的角点列表,对于每个标记,其四个角点均按其原始顺序返回(从右上角开始顺时针旋转),第一个角是右上角,然后是右下角,左下角和左上角。
  • 返回ids:检测到的每个标记的 id,需要注意的是第三个参数和第四个参数具有相同的大小;
  • 返回参数rejectedImgPoints:抛弃的候选标记列表,即检测到的、但未提供有效编码的正方形。每个候选标记也由其四个角定义,其格式与第三个参数相同,该参数若无特殊要求可以省略。
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray,aruco_dict,parameters=parameters)

当我们检测到aruco标签之后,为了方便观察,我们需要进行可视化操作,把标签标记出来:使用drawDetectedMarkers()这个API来绘制检测到的aruco标记,其参数含义如下:

  • 参数image: 是将绘制标记的输入 / 输出图像(通常就是检测到标记的图像)
  • 参数corners:检测到的aruco标记的角点列表
  • 参数ids:检测到的每个标记对应到其所属字典中的id,可选(如果未提供)不会绘制ID。
  • 参数borderColor:绘制标记外框的颜色,其余颜色(文本颜色和第一个角颜色)将基于该颜色进行计算,以提高可视化效果。
  • 无返回值
aruco.drawDetectedMarkers(image, corners,ids,borderColor)

效果演示:

python下使用aruco标记进进行三维姿势估计_第7张图片

python下使用aruco标记进进行三维姿势估计_第8张图片
python下使用aruco标记进进行三维姿势估计_第9张图片
python下使用aruco标记进进行三维姿势估计_第10张图片

动态检测

利用摄像头进行一个实时动态监测aruco标记并且估计姿势,摄像头的内参需要提前标定,如何标定请看我另一篇文章

import numpy as np
import time
import cv2
import cv2.aruco as aruco# mtx = np.array([
#         [2946.48,       0, 1980.53],
#         [      0, 2945.41, 1129.25],
#         [      0,       0,       1],
#         ])
# #我的手机拍棋盘的时候图片大小是 4000 x 2250
# #ip摄像头拍视频的时候设置的是 1920 x 1080,长宽比是一样的,
# #ip摄像头设置分辨率的时候注意一下
#
#
# dist = np.array( [0.226317, -1.21478, 0.00170689, -0.000334551, 1.9892] )#相机纠正参数# dist=np.array(([[-0.51328742,  0.33232725 , 0.01683581 ,-0.00078608, -0.1159959]]))
#
# mtx=np.array([[464.73554153, 0.00000000e+00 ,323.989155],
#  [  0.,         476.72971528 ,210.92028],
#  [  0.,           0.,           1.        ]])
dist=np.array(([[-0.58650416 , 0.59103816, -0.00443272 , 0.00357844 ,-0.27203275]]))
newcameramtx=np.array([[189.076828   ,  0.    ,     361.20126638],[  0 ,2.01627296e+04 ,4.52759577e+02],[0, 0, 1]])
mtx=np.array([[398.12724231  , 0.      ,   304.35638757],[  0.       ,  345.38259888, 282.49861858],[  0.,           0.,           1.        ]])cap = cv2.VideoCapture(0)font = cv2.FONT_HERSHEY_SIMPLEX #font for displaying text (below)#num = 0
while True:ret, frame = cap.read()h1, w1 = frame.shape[:2]# 读取摄像头画面# 纠正畸变newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (h1, w1), 0, (h1, w1))dst1 = cv2.undistort(frame, mtx, dist, None, newcameramtx)x, y, w1, h1 = roidst1 = dst1[y:y + h1, x:x + w1]frame=dst1gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250)parameters =  aruco.DetectorParameters_create()dst1 = cv2.undistort(frame, mtx, dist, None, newcameramtx)'''detectMarkers(...)detectMarkers(image, dictionary[, corners[, ids[, parameters[, rejectedImgPoints]]]]) -> corners, ids, rejectedImgPoints'''#使用aruco.detectMarkers()函数可以检测到marker,返回ID和标志板的4个角点坐标corners, ids, rejectedImgPoints = aruco.detectMarkers(gray,aruco_dict,parameters=parameters)#    如果找不打idif ids is not None:rvec, tvec, _ = aruco.estimatePoseSingleMarkers(corners, 0.05, mtx, dist)# 估计每个标记的姿态并返回值rvet和tvec ---不同# from camera coeficcients(rvec-tvec).any() # get rid of that nasty numpy value array error#        aruco.drawAxis(frame, mtx, dist, rvec, tvec, 0.1) #绘制轴
#        aruco.drawDetectedMarkers(frame, corners) #在标记周围画一个正方形for i in range(rvec.shape[0]):aruco.drawAxis(frame, mtx, dist, rvec[i, :, :], tvec[i, :, :], 0.03)aruco.drawDetectedMarkers(frame, corners)###### DRAW ID #####cv2.putText(frame, "Id: " + str(ids), (0,64), font, 1, (0,255,0),2,cv2.LINE_AA)else:##### DRAW "NO IDS" #####cv2.putText(frame, "No Ids", (0,64), font, 1, (0,255,0),2,cv2.LINE_AA)# 显示结果框架cv2.imshow("frame",frame)key = cv2.waitKey(1)if key == 27:         # 按esc键退出print('esc break...')cap.release()cv2.destroyAllWindows()breakif key == ord(' '):   # 按空格键保存
#        num = num + 1
#        filename = "frames_%s.jpg" % num  # 保存一张图像filename = str(time.time())[:10] + ".jpg"cv2.imwrite(filename, frame)

效果

python下使用aruco标记进进行三维姿势估计_第11张图片

python下使用aruco标记进进行三维姿势估计_第12张图片

python下使用aruco标记进进行三维姿势估计_第13张图片

python下使用aruco标记进进行三维姿势估计_第14张图片

博客地址:https://blog.dgut.top/2020/07/15/python-aruco/

本文参考:

1.https://blog.csdn.net/sinat_17456165/article/details/105649131

2.https://www.learnopencv.com/augmented-reality-using-aruco-markers-in-opencv-c-python/

这篇关于python下使用aruco标记进进行三维姿势估计(转载)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/507095

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学