【一种用opencv实现高斯曲线拟合的方法】

2023-12-17 23:15

本文主要是介绍【一种用opencv实现高斯曲线拟合的方法】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景:

项目中需要实现数据的高斯拟合,进而提取数据中标准差,手头只有opencv库,经过资料查找验证,总结该方法。

基础知识:

1、opencv中solve可以实现对矩阵参数的求解;
2、线的拟合就是对多项式参数求解的过程,多项式可表示为矩阵形式;
3、高斯公式中的指数幂,可以通过取对数的方式转变成多项式的形式;
求解思路:
高斯公式->多项式公式->矩阵参数->调用solve求解;

实现过程及代码

1、确定所选的高斯公式形式

G(x)=a*exp(-((x-b)/c)^2);

2、对于给定的输入x1 ~ xn,有对输出y1 ~ yn。可以形成如下等式:

高斯公式及等式组

对等式左右两边取对数,并进行变换,可形成如下形式
对等式左右取自然对数

在这里插入图片描述
这里,就形成了AX^2+BX+C=Y的形式,其中
在这里插入图片描述
用A,B,C替换后后,原等式可写作
在这里插入图片描述
此时,我们只需要计算出A,B,C的值,再通过ABC与abc的关系即可得到abc的值。(请读者自行推导abc的公式,或见代码部分)

得到如上的多项式的形式后,直接构造参数矩阵,调用cv::solve(X,Y,A‘)接口,即可得到参数矩阵A’,其中即含有A,B,C的值。

上代码:

基础定义:

typedef struct StructMultinomialParamt
{double dB0;//多项式拟合的参数,数字表示幂次double dB1;double dB2;
}S_MULTNMNL_PARAMT;
typedef struct StructGaussParamT
{double dA;//指定的高斯参数double dB;//中心点double dC;//标准差
}S_GAUS_PARAMT;
void Gauss(S_GAUS_PARAMT sGsParamm, cv::Mat mX, cv::Mat& mY)
{cv::Mat mRslt = Mat::zeros(mX.size(), mX.type());double dx = 0;for (double i = 0.; i < mX.cols; i++){for (double j = 0.; j < mX.rows; j++){dx = mX.at<double>(j, i);mRslt.at<double>(j, i) = sGsParamm.dA * exp(-(pow((dx - sGsParamm.dB) / sGsParamm.dC, 2)));}}mY = mRslt;return;
}

高斯参数求解函数

void GaussFitT(cv::Mat mX, cv::Mat mY, S_GAUS_PARAMT* psGsParamm)
{//step1 构造参数矩阵mx与mycv::Mat X = Mat::zeros(mX.rows, 3, CV_64FC1);for (size_t i = 0; i < mX.rows; i++){for (size_t J = 0; J < 3; J++){X.at<double>(i, J) = pow(mX.at<double>(i, 0), 2 - J);}}cv::log(mY, mY);//对结果取对数//step2 多项式拟合cv::Mat A;//参数矩阵cv::solve(X, mY, A, cv::DECOMP_SVD);S_MULTNMNL_PARAMT sBparam;sBparam.dB2 = A.at<double>(0);sBparam.dB1 = A.at<double>(1);sBparam.dB0 = A.at<double>(2);//step3 高斯参数计算ABC-》abcpsGsParamm->dA = exp(sBparam.dB0 - pow(sBparam.dB1, 2) / (4 * sBparam.dB2));psGsParamm->dB = -sBparam.dB1 / (2 * sBparam.dB2);psGsParamm->dC = sqrt(-1 / sBparam.dB2);return;
}

# 测试代码

double dX[50];//输入数据X
double dY[50];//输入数据Y
std::vector<cv::Point> pointsOri;for (int i = 0; i < 50; i++)
{dX[i] = double(i);dY[i] = -0.5 * pow((dX[i] - 25), 2) + 320 + i;pointsOri.push_back(cv::Point(dX[i], dY[i]));
}
//转换成求解函数输入需要的数据格式
cv::Mat mGsInputX = Mat::zeros(50, 1, CV_64FC1);
cv::Mat mGsInputY = Mat::zeros(50, 1, CV_64FC1);
for (size_t i = 0; i < 50; i++)
{mGsInputX.at<double>(i) = dX[i];mGsInputY.at<double>(i) = dY[i];
}S_GAUS_PARAMT sGsParamm;//求解结果
GaussFitT(mGsInputX, mGsInputY, &sGsParamm);//结果对比
Mat mGsOutputY;
Gauss(sGsParamm, mGsInputX, mGsOutputY);
std::vector<cv::Point> pointsNew;//拟合结果
for (int i = 0; i < 50; i++)
{pointsNew.push_back(cv::Point(dX[i], mGsOutputY.at<double>(i)));
}
cv::Mat img(450, 60, CV_8UC3, cv::Scalar(0, 0, 0));
cv::polylines(img, std::vector<std::vector<cv::Point>>{pointsOri}, false, cv::Scalar(0, 0, 255), 2);
cv::polylines(img, std::vector<std::vector<cv::Point>>{pointsNew}, false, cv::Scalar(255, 255, 255), 0.5);// 显示图像
cv::imshow("Line Chart", img);
cv::waitKey(0);

运行输出

在这里插入图片描述

红色的为原始数据分布,白色的为拟合计算结果。
而我需要的标准差,则为sGsParamm.dC。

参考:https://blog.csdn.net/guangjie2333/article/details/115629152
https://blog.csdn.net/KYJL888/article/details/103073956
https://blog.csdn.net/qq_35097289/article/details/103910984

后记:

调用solve的接口求解时,OPENCV提供了以下六种方式以对应不同的情况。对于多项式的求解,也可以采用最小二乘法的逼近,不再调用solve方法,这块后面再填坑吧。

cv::DECOMP_LU 高斯消元法(LU分解)
cv::DECOMP_SVD 奇异值分解(SVD)
cv::DECOMP_CHOLESKY 对于对称正定矩阵
cv::DECOMP_EIG 特征值分解,只用于对称矩阵
cv::DECOMP_QR QR因式分解
cv::DECOMP_NORMAL 可选附加标志,表示要求解标准方程

这篇关于【一种用opencv实现高斯曲线拟合的方法】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/506217

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss