蓝桥杯专题-真题版含答案-【骑士走棋盘】【阿姆斯壮数】【Shell 排序法 - 改良的插入排序】【合并排序法】

本文主要是介绍蓝桥杯专题-真题版含答案-【骑士走棋盘】【阿姆斯壮数】【Shell 排序法 - 改良的插入排序】【合并排序法】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总
游戏脚本-辅助自动化Android控件全解手册再战Android系列
Scratch编程案例软考全系列Unity3D学习专栏
蓝桥系列ChatGPT和AIGC

👉关于作者

专注于Android/Unity和各种游戏开发技巧,以及各种资源分享(网站、工具、素材、源码、游戏等)
有什么需要欢迎底部卡片私我,获取更多支持,交流让学习不再孤单

CSDN-芝麻粒儿

👉实践过程

😜骑士走棋盘

说明骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完[所有的位置?
解法骑士的走法,基本上可以使用递回来解决,但是纯綷的递回在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个方法,在不使用递回的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

#include <stdio.h> int board[8][8] = {0}; int main(void) {int startx, starty;int i, j;printf("输入起始点:");scanf("%d %d", &startx, &starty);if(travel(startx, starty)) {printf("游历完成!\n");}else {printf("游历失败!\n");}for(i = 0; i < 8; i++) {for(j = 0; j < 8; j++) {printf("%2d ", board[i][j]);}putchar('\n');}return 0;
} int travel(int x, int y) {// 对应骑士可走的八个方向int ktmove1[8] = {-2, -1, 1, 2, 2, 1, -1, -2};int ktmove2[8] = {1, 2, 2, 1, -1, -2, -2, -1};// 测试下一步的出路int nexti[8] = {0};int nextj[8] = {0};// 记录出路的个数int exists[8] = {0};int i, j, k, m, l;int tmpi, tmpj;int count, min, tmp;i = x;j = y;board[i][j] = 1;for(m = 2; m <= 64; m++) {for(l = 0; l < 8; l++) exists[l] = 0;l = 0;// 试探八个方向for(k = 0; k < 8; k++) {tmpi = i + ktmove1[k];tmpj = j + ktmove2[k];// 如果是边界了,不可走if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7)continue;// 如果这个方向可走,记录下来if(board[tmpi][tmpj] == 0) {nexti[l] = tmpi;nextj[l] = tmpj;// 可走的方向加一个l++;}}count = l;// 如果可走的方向为0个,返回if(count == 0) {return 0;}else if(count == 1) {// 只有一个可走的方向// 所以直接是最少出路的方向min = 0;}else {// 找出下一个位置的出路数for(l = 0; l < count; l++) {for(k = 0; k < 8; k++) {tmpi = nexti[l] + ktmove1[k];tmpj = nextj[l] + ktmove2[k];if(tmpi < 0 || tmpj < 0 || tmpi > 7 || tmpj > 7) {continue;}if(board[tmpi][tmpj] == 0)exists[l]++;}}tmp = exists[0];min = 0;// 从可走的方向中寻找最少出路的方向for(l = 1; l < count; l++) {if(exists[l] < tmp) {tmp = exists[l];min = l;}}}// 走最少出路的方向i = nexti[min];j = nextj[min];board[i][j] = m;}return 1;
} 

😜阿姆斯壮数

说明
在三位的整数中,例如153可以满足13 + 53 + 33 = 153,这样的数称之为Armstrong数,试写出一程式找出所有的三位数Armstrong数。
解法
Armstrong数的寻找,其实就是在问如何将一个数字分解为个位数、十位数、百位数…,这只要使用除法与余数运算就可以了,例如输入 input为abc,则:
a = input / 100
b = (input%100) / 10
c = input % 10

#include <stdio.h> 
#include <time.h> 
#include <math.h> int main(void) { int a, b, c; int input; printf("寻找Armstrong数:\n"); for(input = 100; input <= 999; input++) { a = input / 100; b = (input % 100) / 10; c = input % 10; if(a*a*a + b*b*b + c*c*c == input) printf("%d ", input); } printf("\n"); return 0; 
}

😜Shell 排序法 - 改良的插入排序

说明
插入排序法由未排序的后半部前端取出一个值,插入已排序前半部的适当位置,概念简单但速度不快。

排序要加快的基本原则之一,是让后一次的排序进行时,尽量利用前一次排序后的结果,以加快排序的速度,Shell排序法即是基于此一概念来改良插入排序法。
解法
Shell排序法最初是D.L Shell于1959所提出,假设要排序的元素有n个,则每次进行插入排序时并不是所有的元素同时进行时,而是取一段间隔。

Shell首先将间隔设定为n/2,然后跳跃进行插入排序,再来将间隔n/4,跳跃进行排序动作,再来间隔设定为n/8、n/16,直到间隔为1之后的最 后一次排序终止,由于上一次的排序动作都会将固定间隔内的元素排序好,所以当间隔越来越小时,某些元素位于正确位置的机率越高,因此最后几次的排序动作将 可以大幅减低。

举个例子来说,假设有一未排序的数字如右:89 12 65 97 61 81 27 2 61 98

数字的总数共有10个,所以第一次我们将间隔设定为10 / 2 = 5,此时我们对间隔为5的数字进行排序,如下所示:
在这里插入图片描述
画线连结的部份表示 要一起进行排序的部份,再来将间隔设定为5 / 2的商,也就是2,则第二次的插入排序对象如下所示:
在这里插入图片描述
再来间隔设定为2 / 2 = 1,此时就是单纯的插入排序了,由于大部份的元素都已大致排序过了,所以最后一次的插入排序几乎没作什么排序动作了:
在这里插入图片描述
将间隔设定为n / 2是D.L Shell最初所提出,在教科书中使用这个间隔比较好说明,然而Shell排序法的关键在于间隔的选定,例如Sedgewick证明选用以下的间隔可以加 快Shell排序法的速度:
在这里插入图片描述
其中4*(2j)2 + 3*(2j) + 1不可超过元素总数n值,使用上式找出j后代入4*(2j)2 + 3*(2j) + 1求得第一个间隔,然后将2j除以2代入求得第二个间隔,再来依此类推。

后来还有人证明有其它的间隔选定法可以将Shell排序法的速度再加快;另外Shell排序法的概念也可以用来改良气泡排序法。

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} void shellsort(int[]); int main(void) { int number[MAX] = {0}; int i;  srand(time(NULL)); printf("排序前:"); for(i = 0; i < MAX; i++) { number[i] = rand() % 100; printf("%d ", number[i]); } shellsort(number); return 0; 
} void shellsort(int number[]) { int i, j, k, gap, t; gap = MAX / 2; while(gap > 0) { for(k = 0; k < gap; k++) { for(i = k+gap; i < MAX; i+=gap) { for(j = i - gap; j >= k; j-=gap) { if(number[j] > number[j+gap]) { SWAP(number[j], number[j+gap]); } else break; } } } printf("\ngap = %d:", gap); for(i = 0; i < MAX; i++) printf("%d ", number[i]); printf("\n"); gap /= 2; } 
}

😜合并排序法

说明之前所介绍的排序法都是在同一个阵列中的排序,考虑今日有两笔或两笔以上的资料,它可能是不同阵列中的资料,或是不同档案中的资料,如何为它们进行排序?
解法可以使用合并排序法,合并排序法基本是将两笔已排序的资料合并并进行排序,如果所读入的资料尚未排序,可以先利用其它的排序方式来处理这两笔资料,然后再将排序好的这两笔资料合并。

有人问道,如果两笔资料本身就无排序顺序,何不将所有的资料读入,再一次进行排序?排序的精神是尽量利用资料已排序的部份,来加快排序的效率,小笔资料的 排序较为快速,如果小笔资料排序完成之后,再合并处理时,因为两笔资料都有排序了,所有在合并排序时会比单纯读入所有的资料再一次排序来的有效率。

那么可不可以直接使用合并排序法本身来处理整个排序的动作?而不动用到其它的排序方式?答案是肯定的,只要将所有的数字不断的分为两个等分,直到最后剩一个数字为止,然后再反过来不断的合并,就如下图所示:
在这里插入图片描述
不过基本上分割又会花去额外的时间,不如使用其它较好的排序法来排序小笔资料,再使用合并排序来的有效率。
下面这个程式范例,我们使用快速排序法来处理小笔资料排序,然后再使用合并排序法处理合并的动作。

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#define MAX1 10 
#define MAX2 10 
#define SWAP(x,y) {int t; t = x; x = y; y = t;} int partition(int[], int, int); 
void quicksort(int[], int, int); 
void mergesort(int[], int, int[], int, int[]); int main(void) { int number1[MAX1] = {0}; int number2[MAX1] = {0}; int number3[MAX1+MAX2] = {0}; int i, num;  srand(time(NULL)); printf("排序前:"); printf("\nnumber1[]:"); for(i = 0; i < MAX1; i++) { number1[i] = rand() % 100; printf("%d ", number1[i]); } printf("\nnumber2[]:"); for(i = 0; i < MAX2; i++) { number2[i] = rand() % 100; printf("%d ", number2[i]); } // 先排序两笔资料 quicksort(number1, 0, MAX1-1); quicksort(number2, 0, MAX2-1); printf("\n排序后:"); printf("\nnumber1[]:"); for(i = 0; i < MAX1; i++) printf("%d ", number1[i]); printf("\nnumber2[]:"); for(i = 0; i < MAX2; i++) printf("%d ", number2[i]); // 合并排序 mergesort(number1, MAX1, number2, MAX2, number3); printf("\n合并后:"); for(i = 0; i < MAX1+MAX2; i++) printf("%d ", number3[i]); printf("\n"); return 0; 
} int partition(int number[], int left, int right) { int i, j, s; s = number[right]; i = left - 1; for(j = left; j < right; j++) { if(number[j] <= s) { i++; SWAP(number[i], number[j]); } } SWAP(number[i+1], number[right]); return i+1; 
} void quicksort(int number[], int left, int right) { int q; if(left < right) { q = partition(number, left, right); quicksort(number, left, q-1); quicksort(number, q+1, right); } 
} void mergesort(int number1[], int M, int number2[], int N, int number3[]) { int i = 0, j = 0, k = 0; while(i < M && j < N) { if(number1[i] <= number2[j]) number3[k++] = number1[i++]; else number3[k++] = number2[j++]; } while(i < M) number3[k++] = number1[i++]; while(j < N) number3[k++] = number2[j++]; 
} 

👉其他

📢作者:小空和小芝中的小空
📢转载说明-务必注明来源:https://zhima.blog.csdn.net/
📢这位道友请留步☁️,我观你气度不凡,谈吐间隐隐有王者霸气💚,日后定有一番大作为📝!!!旁边有点赞👍收藏🌟今日传你,点了吧,未来你成功☀️,我分文不取,若不成功⚡️,也好回来找我。

温馨提示点击下方卡片获取更多意想不到的资源。
空名先生

这篇关于蓝桥杯专题-真题版含答案-【骑士走棋盘】【阿姆斯壮数】【Shell 排序法 - 改良的插入排序】【合并排序法】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/504786

相关文章

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Python实现合并与拆分多个PDF文档中的指定页

《Python实现合并与拆分多个PDF文档中的指定页》这篇文章主要为大家详细介绍了如何使用Python实现将多个PDF文档中的指定页合并生成新的PDF以及拆分PDF,感兴趣的小伙伴可以参考一下... 安装所需要的库pip install PyPDF2 -i https://pypi.tuna.tsingh

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

Python自动化办公之合并多个Excel

《Python自动化办公之合并多个Excel》在日常的办公自动化工作中,尤其是处理大量数据时,合并多个Excel表格是一个常见且繁琐的任务,下面小编就来为大家介绍一下如何使用Python轻松实现合... 目录为什么选择 python 自动化目标使用 Python 合并多个 Excel 文件安装所需库示例代码

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s