统一大语言模型和知识图谱:如何解决医学大模型-问诊不充分、检查不准确、诊断不完整、治疗方案不全面?

本文主要是介绍统一大语言模型和知识图谱:如何解决医学大模型-问诊不充分、检查不准确、诊断不完整、治疗方案不全面?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

统一大语言模型和知识图谱:如何解决医学大模型问诊不充分、检查不准确、诊断不完整、治疗方案不全面?

    • 医学大模型问题
    • 如何使用知识图谱加强和补足专业能力?
      • 大模型结构
      • 知识图谱增强大模型的方法

 

医学大模型问题

问诊。偏离主诉和没抓住核心。

  • 解决方案:建立抗干扰的能力,使得发现用户问题会一追到底。

检查。大模型最大的问题就是它的模糊和宽泛,给出的检查方案经常有缺失和缺漏。

  • 解决方案:检查项目和诊断做关联,结合相应检查证据的类型和证据等级,给患者设计更加精准和高效的检查辅助方案

诊断。之前大模型只能给出一个方向性的诊断。在真实世界的临床应用实践上,最后要给出具体疾病的临床分型和分期。

  • 解决方案:从教科书和临床指南中提炼

治疗。大模型给出的治疗方案往往也是偏方向性的。

  • 解决方案:从教科书和临床指南中把治疗方案和治疗手段与诊断进行关联,以及在不同的疾病分期、分型下诊断方法和诊断的适用条件等综合考虑,辅助设计一个更加精准的治疗方案

医学大模型相当于一个模式识别系统,能迅速反应出 XX 特征 是 XX 疾病。

但是 ta 做不到完备的、全流程的医生治疗过程。

我们需要给 ta 引入结构化的完备能力。

从结构的角度出发,利用整体和部分的关系,有序地思考,正确决策,更有助于深度分析思考。

实现方式是,构建:

  • 指南上的知识点结构化(知识图谱1)
  • 临床上的解题思路结构化(知识图谱2)
  • 疾病上的全流程管理结构化(知识图谱3)
  • 错题上的结构化(知识图谱4)
  • 多模态的结构化(知识图谱5)

同时使用 5 种知识图谱,才能让医学大模型有完备的诊断能力:

  • 从家庭医生,到专科水平
  • 从模式识别,到完备的全流程诊断
  • 从不可控不稳定不可解释的黑盒,变成可控稳定可解释的
  • 能根据反馈,不断修订知识

这种结构化的完备能力,我们能通过 5 种专业的知识图谱实现。

如何使用知识图谱加强和补足专业能力?

论文地址:https://arxiv.org/pdf/2306.08302.pdf

大模型结构

现在的 大模型 可以分为:

  • 1)Decoder-only LLMs:仅采用解码器模块来生成目标输出文本。很多decoder-only的LLMs(如GPT4)通常可以根据少量示例或简单指令执行下游任务,而无需添加预测头或微调。模型的训练范式是预测句子中的下一个单词。
  • 2)Encoder-Decoder LLMs:用编码器和解码器模块。编码器模块负责将输入句子进行编码,解码器用于生成目标输出文本。编码器-解码器LLM(如ChatGLM)能够直接解决基于某些上下文生成句子的任务,例如总结、翻译和问答
  • 3)Encoder-only LLMs:仅用编码器对句子进行编码并理解单词之间的关系(如BERT),训练模式预测句子中的掩码词语,需要添加额外的预测头来解决下游任务,胜在自然语言理解任务(如文本分类、匹配)

知识图谱增强大模型的方法

当你问 熊是什么样的动物?:

  • 语言模型:熊是一种大型哺乳动物,只能给你一个笼统的答案。
  • 知识图谱 + 语言模型可以回答:“熊是一种大型哺乳动物,通常有厚重的毛皮,强壮的身体和大而强壮的爪子。它们喜欢生活在森林中,以植物、鱼和昆虫为食。”

知识图谱增强 分为三部分:

  • 增强的LLM预训练

    将KGs引入训练目标,设计知识导向的训练目标

    将KGs整合到LLM输入中

    将KGs纳入到额外的融合模块中,设计单独处理KGs的模块。

  • 增强的LLM推理

  • 增强的LLM可解释性

正在更新…

这篇关于统一大语言模型和知识图谱:如何解决医学大模型-问诊不充分、检查不准确、诊断不完整、治疗方案不全面?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/503388

相关文章

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl