Floyd算法(弗洛伊德)基本实现以及代码

2023-12-17 05:10

本文主要是介绍Floyd算法(弗洛伊德)基本实现以及代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、本文的由来
  • 二、简单介绍弗洛伊德和迪杰斯特拉的渊源
  • 三、算法思想
    • 1、文字解释
    • 2、图示解释
  • 四、算法代码
  • 五、视频链接

一、本文的由来

数据结构老师布置了一个题目,要求我们写Floyd算法的实现过程的PPT(我不理解,孩子又不是教技的娃娃,为啥还要讲课做PPT嘞)
好吧~为了上课cue到我的时候,不会被发现我在摸鱼,我还是康了康视频,后面会把视频链接附在最后,有兴趣的同学可以康康

二、简单介绍弗洛伊德和迪杰斯特拉的渊源

  • Floyd的算法由来,应该是在迪杰斯特拉算法的基础之上,对图的最短路径的一个更深的理解。

  • 迪杰斯特拉算法主要是对于俩点之间的距离,比如图1中的0到1,0到2,0到3,但是它不涉及任意俩点之间的一个距离问题

  • 这样就导致我们又研究出一种适合于任意俩点之间距离的一个算法,被我们称为Floyd算法,顾名思义,肯定是弗洛伊德研究出来的嚯嚯嚯

图1在这里插入图片描述

三、算法思想

1、文字解释

弗洛伊德算法首先是构建俩个数组

  • A v A_v Av:初始值为图的邻接矩阵
  • P a t h v Path_v Pathv:记录俩点之间的最短路径上的中间点(初始值都为-1)
  • 下标v:顶点v

具体的实现手段(算法思想)

1、每一个顶点v,与任意一个顶点队(i,j),其中i≠j,v≠i,v≠j
如果存在A[i][j] > A[v][j] + A[i][v]
则将A[i][j]的值换为:A[v][j] + A[i][v],同时path[i][j]的值也换为v

2、然后依此对每一个顶点进行上述操作

3、最后得到path数组的值,就是咱们需要的最短路径的顶点坐标,再根据顶点,查找对应的A数组的值(权值),就能得到所谓的最短路径

4、最终俩个数组的意义

  • 二维数组A:对应的是更新过后的俩点之间最短路径的一个权值
  • 二维数组Path:对应的是更新过后俩点之间的最短路径所经历的点坐标

【式子的意义】
A[i][j] > A[v][j] + A[i][v]这个公式的目的就是求出最短的那个路径,比如在
i=1,j=2,v=3的时候,只要上述的比较公式成立,就证明了目前1到2的最短路径为1->3->2,而不是直接的1->2

2、图示解释

用一个略微简单的例子(4个顶点)

最开始的数组在这里插入图片描述

当顶点为1的时候,遍历的次序在这里插入图片描述

当顶点为2的时候,遍历的次序在这里插入图片描述

当顶点为3的时候,遍历的次序在这里插入图片描述

当顶点为4的时候,遍历的次序在这里插入图片描述

最终的A和Path图像 +例子在这里插入图片描述

四、算法代码

  for (k = 0; k < G.vexnum; k++){for (i = 0; i < G.vexnum; i++){for (j = 0; j < G.vexnum; j++){// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);if (dist[i][j] > tmp){// "i到j最短路径"对应的值设,为更小的一个(即经过k)dist[i][j] = tmp;// "i到j最短路径"对应的路径,经过kpath[i][j] = path[i][k];}}}}

五、视频链接

Floyd算法B站视频链接

这篇关于Floyd算法(弗洛伊德)基本实现以及代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/503165

相关文章

MySQL 中的 LIMIT 语句及基本用法

《MySQL中的LIMIT语句及基本用法》LIMIT语句用于限制查询返回的行数,常用于分页查询或取部分数据,提高查询效率,:本文主要介绍MySQL中的LIMIT语句,需要的朋友可以参考下... 目录mysql 中的 LIMIT 语句1. LIMIT 语法2. LIMIT 基本用法(1) 获取前 N 行数据(

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

Android Studio 配置国内镜像源的实现步骤

《AndroidStudio配置国内镜像源的实现步骤》本文主要介绍了AndroidStudio配置国内镜像源的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、修改 hosts,解决 SDK 下载失败的问题二、修改 gradle 地址,解决 gradle

SpringSecurity JWT基于令牌的无状态认证实现

《SpringSecurityJWT基于令牌的无状态认证实现》SpringSecurity中实现基于JWT的无状态认证是一种常见的做法,本文就来介绍一下SpringSecurityJWT基于令牌的无... 目录引言一、JWT基本原理与结构二、Spring Security JWT依赖配置三、JWT令牌生成与