【STM32F407开发板用户手册】第11章 STM32F407移植SEGGER的硬件异常分析

本文主要是介绍【STM32F407开发板用户手册】第11章 STM32F407移植SEGGER的硬件异常分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最新教程下载:http://www.armbbs.cn/forum.php?mod=viewthread&tid=93255

第11章       STM32F407移植SEGGER的硬件异常分析

本章节为大家介绍SEGGER的硬件异常分析代码在MDK和IAR中的使用方法,在实际项目中比较有实用价值,因为我们经常会遇到进入硬件异常的情况。

目录

第11章       STM32F407移植SEGGER的硬件异常分析

11.1 初学者重要提示

11.2 移植方法

11.3 MDK锁定硬件异常位置方法

11.4 IAR锁定硬件异常位置方法

11.5 硬件异常原因分析

11.6 IAR自带的硬件异常分析

11.7 实验例程

11.8 总结


 

11.1 初学者重要提示

  1.   MDK本身也是支持硬件异常分析的,就是不够直观,此贴是MDK的硬件异常分析文档:http://www.armbbs.cn/forum.php?mod=viewthread&tid=21940 。
  2.   IAR8带的硬件异常分析比较好用,在本章11.6小节有说明。

11.2 移植方法

直接移植SEGGER的硬件异常代码会有错误警告,这里针对IAR和MDK版本做了些简单修改,方便大家移植到自己的工程里面。

  •   MDK版本移植

源文件位于本章配套例子的\User\segger\HardFaultHandlerMDK文件夹,添加如下两个文件到工程里面即可。

  •   IAR版本移植

源文件位于本章配套例子的\User\segger\HardFaultHandlerIAR文件夹,添加如下两个文件到工程里面即可。

在文件SEGGER_HardFaultHandler.c里面都添加了串口打印功能,方便不用编译器的调试功能时,通过串口打印提示是否进入硬件异常。

#define ERR_INFO "\r\nEnter HardFault_Handler, System Halt.\r\n"#if 1
{const char *pError = ERR_INFO;uint8_t i;for (i = 0; i < strlen(ERR_INFO); i++){USART1->TDR = pError[i];/* 等待发送结束 */while((USART1->ISR & USART_ISR_TC) == 0);}    
}
#endif 

11.3 MDK锁定硬件异常位置方法

以本章配套的例子为大家做个说明。

1、第1步:测试方法比较简单,进入调试状态,全速运行,然后按下K1按键,就会进入硬件异常中断,此时停止调试,程序就会自动定位到如下位置:

 

2、在Watch1窗口添加变量_Continue

3、修改为任何非0数值,就可以继续单步调试。这个代码后面还有一个第1步中的while循环,也可以继续采用第2步的方法修改。退出硬件异常后就是大家进入硬件异常前下一条要执行的指令(可能还是这个函数本身,因为一个函数由多个指令完成)。定位到出问题的位置:

 

11.4 IAR锁定硬件异常位置方法

以本章配套的例子为大家做个说明。

1、第1步:测试方法比较简单,进入调试状态,全速运行,然后按下K1按键,就会进入硬件异常中断,此时停止调试,程序就会自动定位到如下位置:

2、在Watch1窗口添加变量_Continue

3、修改为任何非0数值,就可以继续单步调试。这个代码后面还有一个第1步中的while循环,也可以继续采用第2步的方法修改。退出硬件异常后就是大家进入硬件异常前下一条要执行的指令(可能还是这个函数本身,因为一个函数由多个指令完成)。定位到出问题的位置:

11.5 硬件异常原因分析

SEGGER提供的这个机制查找出问题的位置比较方便,具体原因需要继续在调试界面里面添加HardFaultRegs结构变量,这个结构体变量添加了所有大家想看的东西。下面是MDK调试状态查看部分结构体数值:

 

具体上面的变量代表什么含义呢,代码里面有注释,查阅起来没有IAR自带的硬件异常提示方便(注意,下面的代码用到了位域)。

#if DEBUG
static volatile unsigned int _Continue;  // Set this variable to 1 to run furtherstatic struct {struct {volatile unsigned int r0;            // Register R0volatile unsigned int r1;            // Register R1volatile unsigned int r2;            // Register R2volatile unsigned int r3;            // Register R3volatile unsigned int r12;           // Register R12volatile unsigned int lr;            // Link registervolatile unsigned int pc;            // Program counterunion {volatile unsigned int byte;struct {unsigned int IPSR : 8;           // Interrupt Program Status register (IPSR)unsigned int EPSR : 19;          // Execution Program Status register (EPSR)unsigned int APSR : 5;           // Application Program Status register (APSR)} bits;} psr;                               // Program status register.} SavedRegs;union {volatile unsigned int byte;struct {unsigned int MEMFAULTACT    : 1;   // Read as 1 if memory management fault is activeunsigned int BUSFAULTACT    : 1;   // Read as 1 if bus fault exception is activeunsigned int UnusedBits1    : 1;unsigned int USGFAULTACT    : 1;   // Read as 1 if usage fault exception is activeunsigned int UnusedBits2    : 3;unsigned int SVCALLACT      : 1;   // Read as 1 if SVC exception is activeunsigned int MONITORACT     : 1;   // Read as 1 if debug monitor exception is activeunsigned int UnusedBits3    : 1;unsigned int PENDSVACT      : 1;   // Read as 1 if PendSV exception is activeunsigned int SYSTICKACT     : 1;   // Read as 1 if SYSTICK exception is activeunsigned int USGFAULTPENDED : 1;   // Usage fault pended; usage fault started but was replaced by ahigher-priority exceptionunsigned int MEMFAULTPENDED : 1;   //  Memory management fault pended; memory management fault startedbut was replaced by a higher-priority exceptionunsigned int BUSFAULTPENDED : 1;   // Bus fault pended; bus fault handler was started but was replacedby a higher-priority exceptionunsigned int SVCALLPENDED   : 1;   // SVC pended; SVC was started but was replaced by a higher-priorityexceptionunsigned int MEMFAULTENA    : 1;   // Memory management fault handler enableunsigned int BUSFAULTENA    : 1;   // Bus fault handler enableunsigned int USGFAULTENA    : 1;   // Usage fault handler enable} bits;} syshndctrl;                          // System Handler Control and State Register (0xE000ED24)/* 省略未写 */volatile unsigned int afsr;            // Auxiliary Fault Status Register (0xE000ED3C), Vendor controlled (optional)
} HardFaultRegs;
#endif

11.6 IAR自带的硬件异常分析

还以本章配套的例子为例,进入调试状态,全速运行,然后按下K1按键,就会进入硬件异常中断,此时停止调试,IAR还会弹出一个硬件异常错误分析,刚进来的时候也许是个空白

单步调试刷新下就出来了:

 

指出了问题的原因是操作的数据地址有问题。

11.7 实验例程

专门为本章节配套了一个例子:V5-001_移植SEGGER的硬件异常分析机制。大家可以按照本章教程提供的方法进行测试。

11.8 总结

除了SEGGER的硬件异常分析方案,建议也测试下MDK和IAR的,以后遇到硬件异常问题,解决起来可以得心应手。

 

这篇关于【STM32F407开发板用户手册】第11章 STM32F407移植SEGGER的硬件异常分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/502690

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实