【AI】模型结构可视化工具Netron应用

2023-12-17 01:04

本文主要是介绍【AI】模型结构可视化工具Netron应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着AI模型的发展,模型的结构也变得越来越复杂,理解起来越来越困难,这时候能够画一张结构图就好了,就像我们在开发过程中用到的UML类图,能够直观看出不同层之间的关系,于是Netron就来了。
Netron支持神经网络、深度学习和机器学习网络的可视化。支持 ONNX, TensorFlow Lite, Core ML, Keras, Caffe, Darknet, MXNet, PaddlePaddle, ncnn, MNN 和 TensorFlow.js格式的可视化展示,同时还实验性的支持PyTorch, TorchScript, TensorFlow, OpenVINO, RKNN, MediaPipe, ML.NET,scikit-learn格式的展示。

1.安装运行

Netron支持在线和离线的操作,可以直接在网页上进行展示,
在线运行地址:https://netron.app/
在这里插入图片描述

也可以使用官方提供的本地安装文件进行安装,可以直接去github上下载最新版本的。
Github下载地址:https://github.com/lutzroeder/netron/releases/

在这里插入图片描述

2.使用

以网页版为例,进去页面之后发现界面很简单,直接点击Open Model就可以选择需要展示的模型结构了,我这边以YOLO V5的模型为例进行演示:
在这里插入图片描述
这里可以直观显示每一层结构
如果不习惯竖着看,可以点击左上角的菜单,选择横向展示
在这里插入图片描述
在这里插入图片描述
同时,我们看到菜单栏中还有显示Attributes、显示Weights等操作,可以根据自己需要进行选择显示。
最后,可以将网络结构图导出成图片文件,方便后续使用。

3.pt模型转onnx模型

由于Netron对pt模型的支持不是很好,如下图所示,同样是YOLO V5的模型,pt模型打开后长这个样子
在这里插入图片描述
可以说不是特别直观,所以我们可以考虑将pt模型转为onnx模型进行展示。这里我们也借鉴YOLO V5的官方代码:
首先要在当前环境下安装onnx包,这个直接使用pip安装即可

pip install onnx

然后可以执行下面的代码进行转换,运行代码需要三个参数:

  • –weights:指定pt模型的位置
  • –img-size:指定图像的大小
  • –batch-size:一般采用默认值1
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formatsUsage:$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""
#首先pip install onnx
import argparse
import sys
import timesys.path.append('./')  # to run '$ python *.py' files in subdirectories
sys.path.append('../') 
import torch
import torch.nn as nnimport models
from models.experimental import attempt_load
from utils.activations import Hardswish
from utils.general import set_logging, check_img_sizeif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')  # from yolov5/models/parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')  # height, widthparser.add_argument('--batch-size', type=int, default=1, help='batch size')opt = parser.parse_args()opt.img_size *= 2 if len(opt.img_size) == 1 else 1  # expandprint(opt)set_logging()t = time.time()# Load PyTorch modelmodel = attempt_load(opt.weights, map_location=torch.device('cpu'))  # load FP32 modellabels = model.names# Checksgs = int(max(model.stride))  # grid size (max stride)opt.img_size = [check_img_size(x, gs) for x in opt.img_size]  # verify img_size are gs-multiples# Inputimg = torch.zeros(opt.batch_size, 3, *opt.img_size)  # image size(1,3,320,192) iDetection# Update modelfor k, m in model.named_modules():m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibilityif isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish):m.act = Hardswish()  # assign activation# if isinstance(m, models.yolo.Detect):#     m.forward = m.forward_export  # assign forward (optional)model.model[-1].export = True  # set Detect() layer export=Truey = model(img)  # dry run# TorchScript exporttry:print('\nStarting TorchScript export with torch %s...' % torch.__version__)f = opt.weights.replace('.pt', '.torchscript.pt')  # filenamets = torch.jit.trace(model, img)ts.save(f)print('TorchScript export success, saved as %s' % f)except Exception as e:print('TorchScript export failure: %s' % e)# ONNX exporttry:import onnxprint('\nStarting ONNX export with onnx %s...' % onnx.__version__)f = opt.weights.replace('.pt', '.onnx')  # filenametorch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],output_names=['classes', 'boxes'] if y is None else ['output'])# Checksonnx_model = onnx.load(f)  # load onnx modelonnx.checker.check_model(onnx_model)  # check onnx model# print(onnx.helper.printable_graph(onnx_model.graph))  # print a human readable modelprint('ONNX export success, saved as %s' % f)except Exception as e:print('ONNX export failure: %s' % e)# CoreML exporttry:import coremltools as ctprint('\nStarting CoreML export with coremltools %s...' % ct.__version__)# convert model from torchscript and apply pixel scaling as per detect.pymodel = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])f = opt.weights.replace('.pt', '.mlmodel')  # filenamemodel.save(f)print('CoreML export success, saved as %s' % f)except Exception as e:print('CoreML export failure: %s' % e)# Finishprint('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))

这篇关于【AI】模型结构可视化工具Netron应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/502559

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

Java中基于注解的代码生成工具MapStruct映射使用详解

《Java中基于注解的代码生成工具MapStruct映射使用详解》MapStruct作为一个基于注解的代码生成工具,为我们提供了一种更加优雅、高效的解决方案,本文主要为大家介绍了它的具体使用,感兴趣... 目录介绍优缺点优点缺点核心注解及详细使用语法说明@Mapper@Mapping@Mappings@Co

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus