本文主要是介绍MySQL按序批量操作大量数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
MySQL按序批量操作大量数据(Java、springboot、mybatisplus、ElasticSearch)
以同步全量MySQL数据到ElasticSearch为例。
核心代码
业务逻辑:
public boolean syncToElasticsearch() {log.info("Starting data synchronization to Elasticsearch.");// 获取最大id和最小idIdRange idRange = newsMapper.getIdRange();log.info("idRange is:{}", JSON.toJSONString(idRange));if (idRange == null || idRange.getMinId() <= 0 || idRange.getMaxId() <= 0) {log.warn("Invalid id range or no data found in MySQL. Sync process aborted.");return false;}long pageSize = 200L;long startId = idRange.getMinId();try {// 循环处理所有数据while (startId <= idRange.getMaxId()) {// 业务逻辑 可以替换成自己需要的log.info("syncToElasticsearch startId:{}", startId);List<News> newsList = newsService.getByIdRange(startId, pageSize);log.info("syncToElasticsearch newsList size:{}", newsList.size());if (CollectionUtils.isEmpty(newsList)) {break;}newsEsService.bulkUpsertToElasticsearch(getNewsEsDTOList(newsList));// 更新startIdstartId = newsList.get(newsList.size() - 1).getId() + 1;log.info("Synced {} Newss to Elasticsearch, current id is:{}", newsList.size(), startId);}} catch (Exception e) {log.error("Error occurred during News data synchronization to Elasticsearch.", e);return false;}log.info("Data synchronization to Elasticsearch completed.");return true;}
mapper:
public interface NewsMapper extends BaseMapper<News> {/*** 获取最小和最大id值的范围** @return*/@Select("SELECT MIN(id) AS minId, MAX(id) AS maxId FROM news")IdRange getIdRange();
}
newsService:
public List<News> getByIdRange(long startId, long pageSize) {if (startId <= 0 || pageSize <= 0) {return Collections.emptyList();}return this.list(new LambdaQueryWrapper<News>().ge(News::getId, startId).orderByAsc(News::getId).last("limit " + pageSize));}
实体类定义:
@Data
public class IdRange {private Long minId;private Long maxId;
}
为什么不直接用分页?
页面深度越大查询性能越慢,当表有大量数据时处理后面的数据会很耗时。
这篇关于MySQL按序批量操作大量数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!