《哥德尔证明》阅读笔记——一致性问题

2023-12-16 17:44

本文主要是介绍《哥德尔证明》阅读笔记——一致性问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

从第一次了解到哥德尔不确定性原理时,我就被此定理的内涵和意义所吸引,也对这个定理的证明过程充满兴趣,最近闲暇时,买了这本《哥德尔证明》的书,希望理解这个意义重大的数学定理的核心,在此做一个阅读笔记。

背景

提哥德尔不确定性原理就不得不追溯到一个古老且优美的数学思想“公理化方法”,公理化方法最早来自于古希腊的欧氏几何,欧几里得通过五条公理或公设,再加上对点线面这些概念的定义,运用逻辑推理,导出了几何学的众多定理。

高斯,波尔约,罗巴切夫斯基和黎曼等人通过更改欧几里得第五公设,得到了另一套完全不同的几何学公理,这剧烈动摇了数学家对公理的看法,公理的显然性,自明性不再是纯数学家关注的重点,纯数学家的任务应当时从公理推导出定理,而不需要关心公理是否为真。

数学不应当被视为数量的科学,更恰当的说法应当是对任意给定一组公理,得出其逻辑上蕴涵的结论的学科,它不必和任何实物有对应关系。此时我们对公理化几何学有了进一步的认识,我们甚至可以去掉定义,“点”,“线”,“面”这些概念是无需定义的,因为在公理化体系中它们没有任何意义,它们只是用于承载公理,也可以理解为,它们被公理隐式定义。总而言之,不要关注我们所讨论的“陈述”,只需要关注“陈述”之间的逻辑依赖。用罗素的话总结,纯数学是一门我们不知道自己在说什么,也不知道我们说的是否为真的学科

一片完全抽象的土地,完全没有任何实际世界的信标,一个很精妙的词语形容是“形式化”的,我们可以建立各种各样的形式化的系统,这些系统可能可以往现实世界进行映射,比如几何学,也可能只有形式的推理过程,这不是什么大问题,一个真正的核心问题是,一个形式化的系统,他的根基——一组公理,是否是一致的,即公理导出的定理是否无矛盾。

公理是否一致的模型法

对欧几里得几何来说,有一条可靠的原则能保证其一致性,即逻辑上不相容的陈述不可能同时为真。这里我们说真,是指欧几里得五大公理在我们的经验中都是真命题,此时说的是形式系统的现实映射。

对于非欧几何或者其他抽象的形式系统来说,想通过和欧氏几何一样的方法说明公理的一致性,只有通过建立一种解释或模型,如果可以将公理转换为这种解释下的真陈述,就可以确定抽象公理的一致性。

这套方法的原理是什么,我的理解是,这相当于将公理的一致性依托在一个我们现实世界的模型中,在模型和抽象的公理体系中做了一个同构,这个模型可以存在,就说明了公理体系的结构也无矛盾。

一个形式系统示例

假设我们有类的概念,表示可区分成分的组合,其中每个成分成为类的元素,有 K K K L L L两个集合,那么可以建立一套公理:

  • K K K任意两个元素恰好包含在 L L L的一个元素之中
  • 没有 K K K的元素被包含在 L L L的两个以上元素之中
  • K K K的所有元素并不都包含在 L L L的单个元素之中
  • L L L的任意两个元素恰好包含 K K K的一个元素
  • 没有 L L L的元素包含 K K K的两个以上的元素

这一套公理体系足够抽象,无法按直观理解,我们即不知道元素是什么,也不知道包含是什么意思,虽然如此,这套公理体系仍然可以导出一些定理。例如通过第一条公理和第三条公理,我们可以知道 K K K的元素数目必然大于 2 2 2,甚至可以证明出 K K K元素数目一定为 3 3 3

事实上,我们可以找到一个常见的模型,把所有公理映射为关于此模型的真陈述,此映射为: K K K的元素是三角形的三个顶点, L L L的元素是三角形的三个边,包含的含义视为 L L L的元素代表的边是否连着 K K K代表的顶点。那么这套公理映射到这套模型中就是:

  • 三角形任意两个顶点在三角形一个边上。
  • 三角形任何顶点都不会连两个以上的边。
  • 三角形任何一个边,都不可能连所有顶点。
  • 三角形任意两个边,恰好会连同一个顶点。
  • 三角形任意一个边都不可能连三个顶点。

这些都是真陈述,因此这个形式系统的公理是一致的。

关于一致性的再次追问

使用最严格的态度追问,即便我们所说的模型论是能证明公理系统的一致性的,欧几里得几何学的公理转换为日常经验描述,在我们所属的模型,即日常的平直空间中是正确的吗?我们可以在有穷的事实中确定其“可能正确”,但空间是无限的,我们怎么能确信日常经验能推到无穷的空间呢?三角形那个形式系统是确信无疑的,因为他的模型是可数的,我们可以尽情检验所有边和点。两者有根本区别。

希尔伯特借助笛卡尔坐标系,将欧几里得几何映射为代数学,但这仍然无法回避那个核心的问题,我们没有一个无穷的可信的模型作为源头。遗憾的是,大部分公理系统都只能映射到非无穷模型。

这篇关于《哥德尔证明》阅读笔记——一致性问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/501336

相关文章

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解