本文主要是介绍管理类联考——数学——真题篇——按知识分类——几何——解析几何,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 解析几何
- 2023
- 真题(2023-07)-几何-解析几何-最值-画图求最值-两线相减求最大-联想三角形的“两边差小于第三边”,当为第三边为最大
- 真题(2023-19)-几何-解析几何-最值-画图求最值-圆方程画出圆的形状-两点间距离型最值=动点在多边形上运动求最值:求 ( x − a ) 2 + ( y − b ) 2 (x-a)^2+(y-b)^2 (x−a)2+(y−b)2最值:设 ( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (x−a)2+(y−b)2=r2,此时,要求的式子可看作是圆的半径的平方。由于 d = ( x − a ) 2 + ( y − b ) 2 d=\sqrt{(x-a)^2+(y-b)^2} d=(x−a)2+(y−b)2,故所求式子 ( x − a ) 2 + ( y − b ) 2 (x-a)^2+(y-b)^2 (x−a)2+(y−b)2可转化为求定点 ( a , b ) (a,b) (a,b)到动点 ( x , y ) (x,y) (x,y)的距离的平方。
- 真题(2023-20)-几何-解析几何-画图求最值-圆方程画出圆的形状-举反例
- 2022
- 2021
- 真题(2021-10)-几何-解析几何-最值-画图求最值-若四边形ABCD的对角线AC、BD满足AC⊥BD,则 S A B C D = 1 2 A C ⋅ B D S_{ABCD}=\frac{1}{2}AC·BD SABCD=21AC⋅BD
- 真题(2021-20)-几何-解析几何-位置-线圆位置-相切-圆求出圆心转为点到直线的距离公式: l : a x + b y + c = 0 l:ax+by+c=0 l:ax+by+c=0,点( x 0 , y 0 x_0,y_0 x0,y0)到 l l l的距离为 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2∣ax0+by0+c∣
- 真题(2021-21)-几何-解析几何-位置-线圆位置-相离-也还是转为圆心点到直线的距离公式
- 2020
- 真题(2020-07)-几何-解析几何-最值-画图求最值-圆方程画出圆的形状;-算术-绝对值-绝对值号、一个等号和两个未知数=函数画图;算术-绝对值不等式函数-图像;-前10题可以特值法,设未知数;
- 真题(2020-17)-几何-解析几何-位置-线圆位置-相切-圆心点到直线距离公式 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2∣ax0+by0+c∣
- 2019
- 真题(2019-05)-几何-解析几何-对称-点与直线的对称点坐标公式: l : a x + b y + c = 0 l:ax+by+c=0 l:ax+by+c=0,点( x 0 , y 0 x_0,y_0 x0,y0)关于 l l l的对称点的坐标公式: ( x 0 − 2 a a x 0 + b y 0 + c a 2 + b 2 , y 0 − 2 b a x 0 + b y 0 + c a 2 + b 2 ) (x_0-2a\frac{ax_0+by_0+c}{a^2+b^2},y_0-2b\frac{ax_0+by_0+c}{a^2+b^2}) (x0−2aa2+b2ax0+by0+c,y0−2ba2+b2ax0+by0+c)
- 真题(2019-18)-几何-解析几何-位置-相交-线圆相交-圆方程化为标准圆方程求出圆心,求圆心点直线距离公式。
- 真题(2019-24)-几何-解析几何-最值-这一题考试遇到就跳过了。_。-解析几何求最值画图-
- 2018
- 真题(2018-10)-几何-解析几何-位置-线圆位置-相切转为圆心点到直线距离公式 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2∣ax0+by0+c∣
- 真题(2018-22)-几何-解析几何-线性规划-先看边界再取整
- 真题(2018-24)--A-几何-解析几何-位置-线圆位置-转换为圆心点到直线距离公式
- 2017
- 真题(2017-17)-A-几何-解析几何-圆的方程
- 2016
- 真题(2016-10)-几何-解析几何-画图-中点坐标公式
- 真题(2016-11)-几何-解析几何-最值-截距型最值-有x,y转为斜截式,根据图像判断最值;-解析几何求最值,需要转为函数,如直线方程,圆方程等画图判断最值。
- 真题(2016-22)-几何-图像的判断
- 2015
- 真题(2015-11)-几何-解析几何-直线与圆的位置关系
- 真题(2015-16)-D-几何-解析几何-直线与圆的位置关系
- 2014
- 2013
解析几何
2023
真题(2023-07)-几何-解析几何-最值-画图求最值-两线相减求最大-联想三角形的“两边差小于第三边”,当为第三边为最大
解析几何——最值——汇总
斜率型最值:求 y − b x − a \frac{y-b}{x-a} x−ay−b最值:设 k = y − b x − a k=\frac{y-b}{x-a} k=x−ay−b,转化为求定点 ( a , b ) (a,b) (a,b)和动点 ( x , y ) (x,y) (x,y)相连所成直线的斜率范围。
截距型最值=动点在多边形上运动求最值:求 a x ± b y ax±by ax±by最值:设 a x ± b y = c ax±by=c ax±by=c,即 y = − a b x ± c b y=-\frac{a}{b}x±\frac{c}{b} y=−bax±bc,转化为求动直线截距的最值。或者,边界点处取最值,逐一验证多边形顶点。
两点间距离型最值=动点在多边形上运动求最值:求 ( x − a ) 2 + ( y − b ) 2 (x-a)^2+(y-b)^2 (x−a)2+(y−b)2最值:设 ( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (x−a)2+(y−b)2=r2,此时,要求的式子可看作是圆的半径的平方。由于 d = ( x − a ) 2 + ( y − b ) 2 d=\sqrt{(x-a)^2+(y-b)^2} d=(x−a)2+(y−b)2,故所求式子 ( x − a ) 2 + ( y − b ) 2 (x-a)^2+(y-b)^2 (x−a)2+(y−b)2可转化为求定点 ( a , b ) (a,b) (a,b)到动点 ( x , y ) (x,y) (x,y)的距离的平方。
对称求最值=动点在直线上运动求最值:
①同侧求最小(考查形式:已知 A 、 B A、B A、B两点在直线l的同侧,在 l l l上找一点 P P P,使得 P A + P B PA+PB PA+PB最小;解法:作点A(或点B)关于直线 l l l的对称点 A 1 A_1 A1,连接 A 1 B A_1B A1B,交直线 l l l于点 P P P,则 A 1 B A_1B A1B即为所求的最小值,有 ( P A + P B ) m i n = A 1 B (PA+PB)_{min}=A_1B (PA+PB)min=A1B);
②异侧求最大(考查形式:已知 A 、 B A、B A、B两点在直线 l l l异侧,在 l l l上找一点 P P P,使得 P A − P B PA-PB PA−PB最大;解法:作点A(或点B)关于直线 l l l的对称点 A 1 A_1 A1,连接 A 1 B A_1B A1B,交直线 l l l于点 P P P,则 A 1 B A_1B A1B即为所求的最大值,即 ( P A − P B ) m a x = A 1 B (PA-PB)_{max}=A_1B (PA−PB)max=A1B)。——【同侧加和求最小值,异侧相减求最大值】
圆心求最值=动点在圆上运动求最值:
①求圆外或圆内一点A到圆上距离的最值: m a x = O A + r ; m i n = ∣ O A − r ∣ max=OA+r;min=|OA-r| max=OA+r;min=∣OA−r∣
②直线与圆相离,求圆上点到直线距离的最值:求出圆心到直线的距离d,则距离最大值为 d + r d+r d+r,最小值为 d − r d-r d−r;直线与圆相切,最大值为 2 r 2r 2r,最小值为0;直线与圆相交,最大值为 d + r d+r d+r,最小值为0。
③两圆相离,求两圆上的点的距离的最值:求出圆心距 O 1 O 2 O_1O_2 O1O2,则距离最大值为 O 1 O 2 + r 1 + r 2 O_1O_2+r_1+r_2 O1O2+r1+r2,最小值为 O 1 O 2 − r 1 − r 2 O_1O_2-r_1-r_2 O1O2−r1−r2。
④过圆内一点最长或最短的弦,最长的弦为过该点的直径;最短的弦是以该点为中点的弦(与最长弦垂直)——【①求圆上的点到直线距离的最值求出圆心到直线的距离,再根据圆与直线的位置关系,求解。一般是距离加半径是最大值,距离减半径是最小值。②求两圆上的点的距离的最值。求出圆心距,再减半径或加半径即可。】
真题(2023-19)-几何-解析几何-最值-画图求最值-圆方程画出圆的形状-两点间距离型最值=动点在多边形上运动求最值:求 ( x − a ) 2 + ( y − b ) 2 (x-a)^2+(y-b)^2 (x−a)2+(y−b)2最值:设 ( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (x−a)2+(y−b)2=r2,此时,要求的式子可看作是圆的半径的平方。由于 d = ( x − a ) 2 + ( y − b ) 2 d=\sqrt{(x-a)^2+(y-b)^2} d=(x−a)2+(y−b)2,故所求式子 ( x − a ) 2 + ( y − b ) 2 (x-a)^2+(y-b)^2 (x−a)2+(y−b)2可转化为求定点 ( a , b ) (a,b) (a,b)到动点 ( x , y ) (x,y) (x,y)的距离的平方。
真题(2023-20)-几何-解析几何-画图求最值-圆方程画出圆的形状-举反例
2022
2021
真题(2021-10)-几何-解析几何-最值-画图求最值-若四边形ABCD的对角线AC、BD满足AC⊥BD,则 S A B C D = 1 2 A C ⋅ B D S_{ABCD}=\frac{1}{2}AC·BD SABCD=21AC⋅BD
10.已知ABCD是圆 x 2 + y 2 = 25 x^2+y^2=25 x2+y2=25的内接四边形,若 A , C A,C A,C是直线 x = 3 x =3 x=3与圆 x 2 + y 2 = 25 x^2+y^2=25 x2+y2=25的交点,则四边形ABCD面积的最大值为( )。
A.20
B.24
C.40
D.48
E.80
真题(2021-20)-几何-解析几何-位置-线圆位置-相切-圆求出圆心转为点到直线的距离公式: l : a x + b y + c = 0 l:ax+by+c=0 l:ax+by+c=0,点( x 0 , y 0 x_0,y_0 x0,y0)到 l l l的距离为 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2∣ax0+by0+c∣
20.设a为实数,圆C: x 2 + y 2 = a x + a y x^2+y^2=ax+ay x2+y2=ax+ay,则能确定圆C的方程。
(1)直线 x + y = 1 x +y=1 x+y=1与圆C相切。
(2)直线 x − y = 1 x-y =1 x−y=1与圆C相切。
真题(2021-21)-几何-解析几何-位置-线圆位置-相离-也还是转为圆心点到直线的距离公式
21.设x ,y为实数,则能确定 x ≤ y x≤y x≤y。
(1) x 2 ≤ y − 1 x^2≤y-1 x2≤y−1。
(2) x 2 + ( y − 2 ) 2 ≤ 2 x^2+(y-2)^2≤2 x2+(y−2)2≤2。
2020
真题(2020-07)-几何-解析几何-最值-画图求最值-圆方程画出圆的形状;-算术-绝对值-绝对值号、一个等号和两个未知数=函数画图;算术-绝对值不等式函数-图像;-前10题可以特值法,设未知数;
7、设实数 x, y 满足 ∣ x − 2 ∣ + ∣ y − 2 ∣ ≤ 2 |x-2|+|y-2|≤2 ∣x−2∣+∣y−2∣≤2,则 x 2 + y 2 x^2+y^2 x2+y2的取值范围是( )
A.[2,18]
B.[2, 20]
C.[2, 36]
D.[4,18]
E.[4, 20]
真题(2020-17)-几何-解析几何-位置-线圆位置-相切-圆心点到直线距离公式 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2∣ax0+by0+c∣
17、曲线 上的点到 x 2 + y 2 = 2 x + 2 y x^2+y^2=2x+2y x2+y2=2x+2y上的点到 a x + b y + 2 = 0 ax+by+\sqrt2=0 ax+by+2=0的距离最小值大于 1。
(1) a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1
(2) a > 0 , b > 0 a>0,b>0 a>0,b>0
2019
真题(2019-05)-几何-解析几何-对称-点与直线的对称点坐标公式: l : a x + b y + c = 0 l:ax+by+c=0 l:ax+by+c=0,点( x 0 , y 0 x_0,y_0 x0,y0)关于 l l l的对称点的坐标公式: ( x 0 − 2 a a x 0 + b y 0 + c a 2 + b 2 , y 0 − 2 b a x 0 + b y 0 + c a 2 + b 2 ) (x_0-2a\frac{ax_0+by_0+c}{a^2+b^2},y_0-2b\frac{ax_0+by_0+c}{a^2+b^2}) (x0−2aa2+b2ax0+by0+c,y0−2ba2+b2ax0+by0+c)
5、设圆C与圆 ( x − 5 ) 2 + y 2 = 2 (x-5)^2+y^2=2 (x−5)2+y2=2关于 y = 2 x y=2x y=2x 对称,则圆 C 方程为( )
A. ( x − 3 ) 2 + ( y − 4 ) 2 = 2 (x-3)^2+(y-4)^2=2 (x−3)2+(y−4)2=2
B. ( x + 4 ) 2 + ( y − 3 ) 2 = 2 (x+4)^2+(y-3)^2=2 (x+4)2+(y−3)2=2
C. ( x − 3 ) 2 + ( y + 4 ) 2 = 2 (x-3)^2+(y+4)^2=2 (x−3)2+(y+4)2=2
D. ( x + 3 ) 2 + ( y − 3 ) 2 = 2 (x+3)^2+(y-3)^2=2 (x+3)2+(y−3)2=2
E. ( x + 3 ) 2 + ( y − 4 ) 2 = 2 (x+3)^2+(y-4)^2=2 (x+3)2+(y−4)2=2
对称问题
圆 ( x − 5 ) 2 + y 2 = 2 (x-5)^2+y^2=2 (x−5)2+y2=2的圆心为(5,0),关于直线y=2x的对称点设为(x,y),则
{ y 2 = 2 ⋅ x + 5 12 , y x − 5 = − 1 2 , \begin{cases} \frac{y}{2}=2·\frac{x+5}{12}, \\ \frac{y}{x-5}=-\frac{1}{2}, \end{cases} {2y=2⋅12x+5,x−5y=−21,
解得: { x = − 3 y = 4 \begin{cases} x=-3 \\ y=4 \end{cases} {x=−3y=4
所以圆C的方程为 ( x + 3 ) 2 + ( y − 4 ) 2 = 2 (x+3)^2+(y-4)^2=2 (x+3)2+(y−4)2=2
真题(2019-18)-几何-解析几何-位置-相交-线圆相交-圆方程化为标准圆方程求出圆心,求圆心点直线距离公式。
18、直线 y = k x y =kx y=kx 与圆 x 2 + y 2 − 4 x + 3 = 0 x^{2}+ y^2−4x+3 =0 x2+y2−4x+3=0 有两个交点
(1) − 3 3 < k < 0 -{\sqrt{3}\over3}<k<0 −33<k<0
(2) 0 < k < 2 2 0<k<{\sqrt{2}\over2} 0<k<22
真题(2019-24)-几何-解析几何-最值-这一题考试遇到就跳过了。_。-解析几何求最值画图-
24、设三角区域D由直线 x + 8 y − 56 = 0 , x − 6 y + 42 = 0 x+8y-56=0,x-6y+42=0 x+8y−56=0,x−6y+42=0与 k x − y + 8 − 6 k = 0 ( k < 0 ) kx-y+8-6k=0(k<0) kx−y+8−6k=0(k<0)围成,则对任意的 ( x , y ) (x,y) (x,y), l g ( x 2 + y 2 ) ≤ 2 lg(x^2+y^2)≤2 lg(x2+y2)≤2
(1) k ∈ ( − ∞ , − 1 ] k∈(-∞,-1] k∈(−∞,−1]
(2) k ∈ [ − 1 , − 1 8 ) k∈[-1,-{1\over8}) k∈[−1,−81)
2018
真题(2018-10)-几何-解析几何-位置-线圆位置-相切转为圆心点到直线距离公式 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2∣ax0+by0+c∣
10.已知圆C : x 2 + ( y − a ) 2 = b x^2+(y-a)^2=b x2+(y−a)2=b,若圆C 在点(1,2)处的切线与 y 轴交点为(0,3),则ab =( )
A.-2
B.-1
C.0
D.1
E.2
真题(2018-22)-几何-解析几何-线性规划-先看边界再取整
22.已知点 P ( m , 0 ) P(m,0) P(m,0), A ( 1 , 3 ) A(1,3) A(1,3), B ( 2 , 1 ) , B(2,1), B(2,1),点 ( x , y ) (x,y) (x,y)在三角形 P A B PAB PAB上,则 x − y x- y x−y的最小值与最大值分别为 − 2 -2 −2和 1 1 1。
(1) m ≤ 1 m ≤ 1 m≤1
(2) m ≥ − 2 m ≥ -2 m≥−2
解题方法
第一步:根据题目写出限定条件对应的不等式组。
第二步:“先看边界”,将不等式直接取等号,求得未知数的解。
第三步:“再取整数”,若所求解为整数,则此整数解即为方程的解;若所求解为小数,则取其左右相邻的整数。进行验证,求出最值。
【注意】这种方法并不严谨,但对于绝大多数选择题来说可以快速得分。
口诀:线性规划问题:先看边界再取整
真题(2018-24)–A-几何-解析几何-位置-线圆位置-转换为圆心点到直线距离公式
24.设a, b 实数,则圆 x 2 + y 2 = 2 y x^2+y^2=2y x2+y2=2y与直线 x + a y = b x+ay=b x+ay=b不相交。
(1) ∣ a − b ∣ > 1 + a 2 |a-b|>\sqrt{1+a^2} ∣a−b∣>1+a2
(2) ∣ a + b ∣ > 1 + a 2 |a+b|>\sqrt{1+a^2} ∣a+b∣>1+a2
2017
真题(2017-17)-A-几何-解析几何-圆的方程
17.圆 x 2 + y 2 − a x − b y + c = 0 x^2+y^2-ax-by+c=0 x2+y2−ax−by+c=0与 x 轴相切,则能确定c 的值。
(1)已知a 的值
(2)已知b 的值
2016
真题(2016-10)-几何-解析几何-画图-中点坐标公式
10.圆 x 2 + y 2 − 6 x + 4 y = 0 x^2+y^2-6x+4y=0 x2+y2−6x+4y=0上到原点距离最远的点是( )
A.(-3,2)
B.(3,-2)
C.(6,4)
D.(-6,4)
E.(6,-4)
真题(2016-11)-几何-解析几何-最值-截距型最值-有x,y转为斜截式,根据图像判断最值;-解析几何求最值,需要转为函数,如直线方程,圆方程等画图判断最值。
11.如图 4 所示,点 A,B,O 的坐标分别为(4,0)、(0,3)、(0,0),若(x, y) 是△AOB中的点,则 2 x + 3 y 2x+3y 2x+3y的最大值为( )
A.6
B.7
C.8
D.9
E.12
真题(2016-22)-几何-图像的判断
22.已知M是一个平面有限点集,则平面上存在到M中各点距离相等的点。
(1)M中只有三个点。
(2)M中的任意三点都不共线。
2015
真题(2015-11)-几何-解析几何-直线与圆的位置关系
11.若直线 y = ax 与圆 ( x − a ) 2 + y 2 = 1 (x-a)^2+y^2=1 (x−a)2+y2=1相切,则 a 2 a^2 a2 = ( )
A. 1 + 3 2 \frac{1+\sqrt{3}}{2} 21+3
B. 1 + 3 2 1+\frac{\sqrt{3}}{2} 1+23
C. 5 2 \frac{\sqrt{5}}{2} 25
D. 1 + 5 2 1+\frac{\sqrt{5}}{2} 1+25
E. 1 + 5 2 \frac{1+\sqrt{5}}{2} 21+5
真题(2015-16)-D-几何-解析几何-直线与圆的位置关系
16.圆盘 x 2 + y 2 ≤ 2 ( x + y ) x^2+y^2≤2(x+y) x2+y2≤2(x+y)被直线 L 分成面积相等的两部分。
(1) L: x + y = 2 x + y = 2 x+y=2
(2) L: 2 x − y = 1 2x-y= 1 2x−y=1
2014
真题(2014-11)-几何-解析几何-圆方程
11.已知直线 l l l是圆 x 2 + y 2 = 5 x^2+y^2=5 x2+y2=5在点(1,2)处的切线,则 l l l在 y 轴上的截距为( )
A. 2 5 \frac{2}{5} 52
B. 2 3 \frac{2}{3} 32
C. 3 2 \frac{3}{2} 23
D. 5 2 \frac{5}{2} 25
E.5
真题(2014-25)-A-几何-解析几何-最值-两点间距离型最值=动点在多边形上运动求最值:求 ( x − a ) 2 + ( y − b ) 2 (x-a)^2+(y-b)^2 (x−a)2+(y−b)2最值:设 ( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (x−a)2+(y−b)2=r2,此时,要求的式子可看作是圆的半径的平方。由于 d = ( x − a ) 2 + ( y − b ) 2 d=\sqrt{(x-a)^2+(y-b)^2} d=(x−a)2+(y−b)2,故所求式子 ( x − a ) 2 + ( y − b ) 2 (x-a)^2+(y-b)^2 (x−a)2+(y−b)2可转化为求定点 ( a , b ) (a,b) (a,b)到动点 ( x , y ) (x,y) (x,y)的距离的平方。
25.已知 x, y 为实数,则 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1。
(1) 4 y − 3 x ≥ 5 4y - 3x ≥ 5 4y−3x≥5
(2) ( x − 1 ) 2 + ( y − 1 ) 2 ≥ 5 (x-1)^2+(y-1)^2≥5 (x−1)2+(y−1)2≥5
2013
真题(2013-08)-几何-解析几何-对称-点与直线的对称点坐标公式: l : a x + b y + c = 0 l:ax+by+c=0 l:ax+by+c=0,点( x 0 , y 0 x_0,y_0 x0,y0)关于 l l l的对称点的坐标公式: ( x 0 − 2 a a x 0 + b y 0 + c a 2 + b 2 , y 0 − 2 b a x 0 + b y 0 + c a 2 + b 2 ) (x_0-2a\frac{ax_0+by_0+c}{a^2+b^2},y_0-2b\frac{ax_0+by_0+c}{a^2+b^2}) (x0−2aa2+b2ax0+by0+c,y0−2ba2+b2ax0+by0+c)
8.点 ( 0 , 4 ) (0,4) (0,4)关于直线 2 x + y + 1 = 0 2x+y+1=0 2x+y+1=0的对称点为( )。
A. ( 2 , 0 ) (2,0) (2,0)
B. ( − 3 , 0 ) (-3,0) (−3,0)
C. ( − 6 , 1 ) (-6,1) (−6,1)
D. ( 4 , 2 ) (4,2) (4,2)
E. ( − 4 , 2 ) (-4,2) (−4,2)
真题(2013-16)-几何-解析几何-面积
16.已知平面区域D1={ ( x , y ) ∣ x 2 + y 2 ≤ 9 {(x,y)|x^2+y^2≤9} (x,y)∣x2+y2≤9},D2={ ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 ≤ 9 {(x,y)|(x-x_0)^2+(y-y_0)^2≤9} (x,y)∣(x−x0)2+(y−y0)2≤9},则 D 1 , D 2 D1,D2 D1,D2覆盖区域的边界长度为 8 π 8π 8π。
(1) x 0 2 + y 0 2 = 9 x_0^2+y_0^2=9 x02+y02=9
(2) x 0 + y 0 = 3 x_0+y_0=3 x0+y0=3
这篇关于管理类联考——数学——真题篇——按知识分类——几何——解析几何的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!