Clickhouse从单节点到集群搭建详解以及分布式分表设计,mysql整表同步,表主键去重以及脚本增删改查,以及可视化工具DBeaver推荐详解

本文主要是介绍Clickhouse从单节点到集群搭建详解以及分布式分表设计,mysql整表同步,表主键去重以及脚本增删改查,以及可视化工具DBeaver推荐详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.背景

参考:ClickHouse高性能分布式分析数据库

二.分布式设计

原始数据表A:a服务器

分表B1:a服务器 分表B2:b服务器 分表B3:c服务器

分布式表C:a服务器
在这里插入图片描述

三.搭建
1.单节点搭建
#使用脚本安装yum源
curl -s https://packagecloud.io/install/repositories/altinity/clickhouse/script.rpm.sh | sudo bash
#yum 安装 server 以及 client
sudo yum install -y clickhouse-server clickhouse-client# yum下载的数据一般都在/etc/init.d目录下
#查看是否安装完成
sudo yum list installed 'clickhouse*'# 对外开放
cd /etc/clickhouse-server
vim config.xml
<listen_host>0.0.0.0</listen_host># 开机启动clickhouse-server 
# systemctl enable clickhouse-server
# systemctl start clickhouse-server
2.集群搭建(三台机器)

在这里插入图片描述

zookeeper搭建参考centos7搭建kafka集群

# 三台服务器依次进行一下操作
vim config.xml
<!-- 外部配置文件 -->
<include_from>/etc/clickhouse-server/metrika.xml</include_from>cd /etc/clickhouse-server
vim metrika.xml<yandex>
<!-- 集群配置 -->
<clickhouse_remote_servers><!-- 3分片1备份 --><cluster_3shards_1replicas><!-- 数据分片1  --><shard><replica><host>10.8.*.147</host><port>9000</port></replica></shard><!-- 数据分片2  --><shard><replica><host>10.8.*.62</host><port> 9000</port></replica></shard><!-- 数据分片3  --><shard><replica><host>10.8.*.239</host><port>9000</port></replica></shard></cluster_3shards_1replicas>
</clickhouse_remote_servers>
<!-- zk配置  -->
<zookeeper-servers><node index="1"><host>10.8.*.147</host><port>2181</port></node><node index="2"><host>10.8.*.62</host><port>2181</port></node><node index="3"><host>10.8.*.239</host><port>2181</port></node></zookeeper-servers>
</yandex>

查看集群是否搭建成功

# 进入客户端
clickhouse-clientselect * from system.clusters;

在这里插入图片描述

四.Clickhouse表设计
4.1mysql整表同步
# 进入客户端
clickhouse-clientCREATE TABLE clickhousedb.clickhousetablename ENGINE = MergeTree ORDER BY xxxxid AS SELECT * FROM mysql('ip:3306', 'mysqldbname', 'mysqltablename', 'mysqluser', 'mysqlpwd');# 查看迁移后的数据量
select count(1) from clickhousetablename;

在这里插入图片描述

4.2分布式表设计
# 分表设计(a,b,c三台服务器)
CREATE TABLE test.ontime_local (
`ip` Nullable(String),`id` Int32,`media` Int8,`type` Int8,`page_id` String,`home_id` Nullable(String),`obj_name` Nullable(String),`img_url` Nullable(String),`c_url` Nullable(String),`company_url` Nullable(String),`email` Nullable(String),`tel` Nullable(String),`vocation` Nullable(String),`address` Nullable(String),`markers` Nullable(String),`country` Nullable(String),`country_code` Nullable(String),`country_code_iso` Nullable(String),`country_code_iso2` Nullable(String),`province` Nullable(String),`city` Nullable(String),`district` Nullable(String),`street` Nullable(String),`fans` Nullable(String),`lik` Nullable(String),`brief` Nullable(String),`source_kw` Nullable(String),`to_company` Nullable(String),`img_status` Int32,`is_upload` Int32,`twitter` Nullable(String),`linkedin` Nullable(String),`pinterest` Nullable(String),`instagram` Nullable(String),`issuu` Nullable(String),`youtube` Nullable(String),`google` Nullable(String),`times` Nullable(DateTime),`update_time` Nullable(DateTime),`status` Nullable(String)
) ENGINE = MergeTree ORDER BY id SETTINGS index_granularity = 8192
# 分布式表设计
CREATE TABLE test(数据库名).ontime_all ENGINE = Distributed(cluster_3shards_1replicas(集群名), test(数据库名), ontime_local(表名), rand())
# 迁移数据到分布式表
INSERT INTO test.ontime_all SELECT * FROM jwt_client;

查看每个节点分表的数据情况
在这里插入图片描述
查看分布式表的数据情况
在这里插入图片描述

4.3 ReplacingMergeTree根据主键去重
# 根据c_url字段进行去重
CREATE TABLE tablename (c_url String,facebook_content String,facebook_img String,facebook_time String,facebook_time_sort Int64,main_id String,update_time Int64,post_id String,create_date date
) ENGINE = ReplacingMergeTree(create_date, (c_url), 8192);

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],...
) ENGINE = ReplacingMergeTree([ver])
[PARTITION BY expr]
[ORDER BY expr]
[PRIMARY KEY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]# 官网参考案例
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],...
) ENGINE [=] ReplacingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, [ver])
4.4 python脚本增删改查操作clickhouse
# -*- coding: utf-8 -*-
# @Time    : 2020/4/26 20:13
# @Author  :import datetime
from decimal import Decimalfrom clickhouse_driver import Clientclass ClickHouse(object):"""clickhouse读写封装"""def __init__(self, host='ip', port='9000', user='default'):self.client = Client(host=host, port=port, user=user)def query(self, sql):"""查询"""ans = self.client.execute(sql, with_column_types=True)def time_transform(obj):"""时间转换处理"""if isinstance(obj, datetime.datetime):return str(obj)elif isinstance(obj, datetime.date):return str(obj)elif isinstance(obj, Decimal):return float(obj)else:return objreturn dict(zip((i[0] for i in ans[1]), (time_transform(ob) for ob in ans[0][0])))def bulk_insert(self, db_name, table_name, kwargs_list):"""批量插入 建议一次性插入数据量大于1000条:param db_name::param table_name::param kwargs_list::return:"""sql = 'INSERT INTO  {db_name}.{table_name}(%s)values'.format(db_name=db_name, table_name=table_name)keys = kwargs_list[0].keys()sql_2 = sql % ",".join(keys)ans = self.client.execute(sql_2, params=kwargs_list)return ansif __name__ == '__main__':click = ClickHouse()kwargs_list = [{"id": 555555, "name": "东莞测试"},{"id": 666666, "name": "东莞测试"},{"id": 777777, "name": "东莞测试"},{"id": 888888, "name": "东莞测试"},{"id": 999999, "name": "东莞测试"}]# test.mytest# 批量插入click.bulk_insert("test", "mytest", kwargs_list)sql = "select * from test.mytest where id=555555;"result = click.query(sql)print(result)# 单条更新操作
ALTER TABLE test.f_kw_url UPDATE ip='ddd112.1112.111.222' where id=11325362;# 单条删除操作
ALTER TABLE test.f_kw_url DELETE where id=999999;
五.Clickhouse可视化工具DBeaver推荐

在这里插入图片描述

参考:https://clickhouse.tech/docs/en/engines/table_engines
参考:https://www.jianshu.com/p/20639fdfdc99
推荐:http://blog.itpub.net/69965230/viewspace-2690052/

这篇关于Clickhouse从单节点到集群搭建详解以及分布式分表设计,mysql整表同步,表主键去重以及脚本增删改查,以及可视化工具DBeaver推荐详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/500095

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优