CS231n作业笔记2.5:dropout的实现与应用

2023-12-15 23:38

本文主要是介绍CS231n作业笔记2.5:dropout的实现与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CS231n简介

详见 CS231n课程笔记1:Introduction。
本文都是作者自己的思考,正确性未经过验证,欢迎指教。

作业笔记

dropout中唯一需要注意的就是为了平衡train与test,通过除以期望值即可。

1. 前向传播

  if mode == 'train':mask = (np.random.rand(*x.shape)<p)out = x*mask / pelif mode == 'test':out = xmask = np.ones_like(x)

2. 后向传播

  if mode == 'train':dx = dout * mask / dropout_param['p']elif mode == 'test':dx = doutreturn dx

3. 应用:带dropout的多层神经网络

在每一层ReLU后接一层dropout即可。关于多层神经网络的实现,请参考CS231n作业笔记2.4:Batchnorm的实现与使用。

    cache = {}hidden_value = Nonehidden_value,cache['fc1'] = affine_forward(X,self.params['W1'],self.params['b1'])if self.use_batchnorm:hidden_value,cache['bn1'] = batchnorm_forward(hidden_value, self.params['gamma1'], self.params['beta1'], self.bn_params[0])hidden_value,cache['relu1'] = relu_forward(hidden_value)if self.use_dropout:hidden_value, cache['drop1'] = dropout_forward(hidden_value,self.dropout_param)for index in range(2,self.num_layers):hidden_value,cache['fc'+str(index)] = affine_forward(hidden_value,self.params['W'+str(index)],self.params['b'+str(index)])if self.use_batchnorm:hidden_value,cache['bn'+str(index)] = batchnorm_forward(hidden_value,  self.params['gamma'+str(index)], self.params['beta'+str(index)], self.bn_params[index-1])hidden_value,cache['relu'+str(index)] = relu_forward(hidden_value)if self.use_dropout:hidden_value, cache['drop'+str(index)] = dropout_forward(hidden_value,self.dropout_param)scores,cache['score'] = affine_forward(hidden_value,self.params['W'+str(self.num_layers)],self.params['b'+str(self.num_layers)])# If test mode return earlyif mode == 'test':return scoresloss, grads = 0.0, {}loss,dscores = softmax_loss(scores,y)for index in range(1,self.num_layers+1):loss += 0.5*self.reg*np.sum(self.params['W'+str(index)]**2)dhidden_value,grads['W'+str(self.num_layers)],grads['b'+str(self.num_layers)] = affine_backward(dscores,cache['score'])for index in range(self.num_layers-1,1,-1):if (self.use_dropout):dhidden_value = dropout_backward(dhidden_value, cache['drop'+str(index)])dhidden_value = relu_backward(dhidden_value,cache['relu'+str(index)])if self.use_batchnorm:dhidden_value, grads['gamma'+str(index)], grads['beta'+str(index)] = batchnorm_backward(dhidden_value, cache['bn'+str(index)])dhidden_value,grads['W'+str(index)],grads['b'+str(index)] = affine_backward(dhidden_value,cache['fc'+str(index)])if (self.use_dropout):dhidden_value = dropout_backward(dhidden_value, cache['drop1'])dhidden_value = relu_backward(dhidden_value,cache['relu1'])if self.use_batchnorm:dhidden_value, grads['gamma1'], grads['beta1'] = batchnorm_backward(dhidden_value, cache['bn1'])dhidden_value,grads['W1'],grads['b1'] = affine_backward(dhidden_value,cache['fc1'])for index in range(1,self.num_layers+1):grads['W'+str(index)] += self.reg * self.params['W'+str(index)] 

这篇关于CS231n作业笔记2.5:dropout的实现与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498324

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小