CS231n作业笔记2.1:两层全连接神经网络的分层实现

2023-12-15 23:38

本文主要是介绍CS231n作业笔记2.1:两层全连接神经网络的分层实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CS231n简介

详见 CS231n课程笔记1:Introduction。
本文都是作者自己的思考,正确性未经过验证,欢迎指教。

作业笔记

1. 神经网络的分层实现

实现全连接层+ReLU层的前向传播与后向传播。
参考资料:CS231n课程笔记4.2:神经网络结构,CS231n课程笔记4.1:反向传播BP, CS231n作业笔记1.6:神经网络的误差与梯度计算,CS231n作业笔记1.5:Softmax的误差以及梯度计算。

  1. 全连接前向传播:out = x.reshape([x.shape[0],-1]).dot(w)+b
  2. 全连接后向传播:
x, w, b = cachedx, dw, db = None, None, Nonedw = x.reshape([x.shape[0],-1]).T.dot(dout)db = np.sum(dout,axis = 0)dx = dout.dot(w.T).reshape(x.shape)
  1. ReLU的前向传播:out = x*(x>0)
  2. ReLU的后向传播:dx = dout * (x>0)

2. 两层全连接神经网络的打包实现

把上诉神经层串联起来,构造两层全连接神经网络。

2.1. 参数初始化

使用numpy.random.randn函数,用于服从标准分布的随机参数。注意:不要使用numpy.random.rand函数(用于生成[0,1)内的平均分布);也可以使用numpy.random.normal函数。

    self.params['W1'] = np.random.randn(input_dim,hidden_dim)*weight_scaleself.params['b1'] = np.zeros(hidden_dim)self.params['W2'] = np.random.randn(hidden_dim,num_classes)*weight_scaleself.params['b2'] = np.zeros(num_classes)

2.2. 计算loss以及gradient

此函数用于计算loss,以及各个参数的梯度。大致上就是把上诉两个神经层以及最后一层softmax按照一定的形式串联起来。
注意:对于全连接神经网络,bias部分不进行正则化。因为bias不与数据相乘,所以不具有控制数据各个维度对最后影响大小的作用。(然而如果归一化做的好,对bias做正则化,不会使得效果变差,原因可能是因为bias比weight的数目少太多,模型能够支持对于bias的变化以获得更好的准确率)[参考资料:Neural Networks Part 2: Setting up the Data and the Loss]

1.计算score

    scores = NoneW1,b1,W2,b2 = self.params['W1'],self.params['b1'],self.params['W2'],self.params['b2']fc1_out,fc1_cache = affine_forward(X,W1,b1)relu_out,relu_cache = relu_forward(fc1_out)fc2_out,fc2_cache = affine_forward(relu_out,W2,b2)scores = fc2_out

2.计算loss以及梯度

    loss, grads = 0, {}loss,dscores = softmax_loss(scores,y)loss += 0.5*self.reg*(np.sum(W1**2)+np.sum(W2**2))drelu_out,dW2,db2 = affine_backward(dscores,fc2_cache)dfc1_out = relu_backward(drelu_out,relu_cache)_,dW1,db1 = affine_backward(dfc1_out,fc1_cache)dW1 += self.reg*W1#db1 += self.reg*b1dW2 += self.reg*W2#db2 += self.reg*b2grads['W1'],grads['b1'],grads['W2'],grads['b2'] = dW1,db1,dW2,db2

这篇关于CS231n作业笔记2.1:两层全连接神经网络的分层实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/498318

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换