本文主要是介绍CS231n作业笔记2.1:两层全连接神经网络的分层实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
CS231n简介
详见 CS231n课程笔记1:Introduction。
本文都是作者自己的思考,正确性未经过验证,欢迎指教。
作业笔记
1. 神经网络的分层实现
实现全连接层+ReLU层的前向传播与后向传播。
参考资料:CS231n课程笔记4.2:神经网络结构,CS231n课程笔记4.1:反向传播BP, CS231n作业笔记1.6:神经网络的误差与梯度计算,CS231n作业笔记1.5:Softmax的误差以及梯度计算。
- 全连接前向传播:
out = x.reshape([x.shape[0],-1]).dot(w)+b
- 全连接后向传播:
x, w, b = cachedx, dw, db = None, None, Nonedw = x.reshape([x.shape[0],-1]).T.dot(dout)db = np.sum(dout,axis = 0)dx = dout.dot(w.T).reshape(x.shape)
- ReLU的前向传播:
out = x*(x>0)
- ReLU的后向传播:
dx = dout * (x>0)
2. 两层全连接神经网络的打包实现
把上诉神经层串联起来,构造两层全连接神经网络。
2.1. 参数初始化
使用numpy.random.randn函数,用于服从标准分布的随机参数。注意:不要使用numpy.random.rand函数(用于生成[0,1)内的平均分布);也可以使用numpy.random.normal函数。
self.params['W1'] = np.random.randn(input_dim,hidden_dim)*weight_scaleself.params['b1'] = np.zeros(hidden_dim)self.params['W2'] = np.random.randn(hidden_dim,num_classes)*weight_scaleself.params['b2'] = np.zeros(num_classes)
2.2. 计算loss以及gradient
此函数用于计算loss,以及各个参数的梯度。大致上就是把上诉两个神经层以及最后一层softmax按照一定的形式串联起来。
注意:对于全连接神经网络,bias部分不进行正则化。因为bias不与数据相乘,所以不具有控制数据各个维度对最后影响大小的作用。(然而如果归一化做的好,对bias做正则化,不会使得效果变差,原因可能是因为bias比weight的数目少太多,模型能够支持对于bias的变化以获得更好的准确率)[参考资料:Neural Networks Part 2: Setting up the Data and the Loss]
1.计算score
scores = NoneW1,b1,W2,b2 = self.params['W1'],self.params['b1'],self.params['W2'],self.params['b2']fc1_out,fc1_cache = affine_forward(X,W1,b1)relu_out,relu_cache = relu_forward(fc1_out)fc2_out,fc2_cache = affine_forward(relu_out,W2,b2)scores = fc2_out
2.计算loss以及梯度
loss, grads = 0, {}loss,dscores = softmax_loss(scores,y)loss += 0.5*self.reg*(np.sum(W1**2)+np.sum(W2**2))drelu_out,dW2,db2 = affine_backward(dscores,fc2_cache)dfc1_out = relu_backward(drelu_out,relu_cache)_,dW1,db1 = affine_backward(dfc1_out,fc1_cache)dW1 += self.reg*W1#db1 += self.reg*b1dW2 += self.reg*W2#db2 += self.reg*b2grads['W1'],grads['b1'],grads['W2'],grads['b2'] = dW1,db1,dW2,db2
这篇关于CS231n作业笔记2.1:两层全连接神经网络的分层实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!