AMBA协议AXI-Lite(AXI-Lite从机代码设计)

2023-12-15 21:30

本文主要是介绍AMBA协议AXI-Lite(AXI-Lite从机代码设计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、设计思路
    • 1、什么时候发生写数据操作?
    • 2.什么时候发生数据读操作?
    • 3.如何根据AXI_WSTRB信号完成数据的写入?
  • 二、源码设计
    • 2.1 写通道源码设计
    • 2.2 读通道源码设计
    • 2.3 模板代码
  • 三、仿真
  • 总结


一、设计思路

在设计开始之前,我们需要弄清楚以下几个问题:

  1. 什么时候发生写数据操作?
  2. 什么时候发生数据写操作?
  3. 如何根据AXI_WSTRB信号完成数据的写入?

1、什么时候发生写数据操作?

  我们在第4-1节对AXI-Lite协议介绍后,分析了写数据发生的条件,那就是当 写数据和写地址 同时有效时,立即完成传输;
  我们将上面的条件翻译一下,就是当AXI_AWVALID、AXI_AWREADY、AXI_WVALID、AXI_WREADY同时有效时,完成数据写入;
  在此之上,我们还需考虑一个问题,就是完成数据写入后的写响应阶段,在写响应传输的过程中,应该忽略总线上的数据,故引入一个arwen信号来指示当前时刻是否允许地址数据的写入,当BVALID与BREADY信号为高时,arwen有效;
  所以我们对写入条件进行修正,当AXI_AWVALID、AXI_AWREADY、AXI_WVALID、AXI_WREADY、arwen信号同时有效时,完成数据写入;

2.什么时候发生数据读操作?

  数据读操作发生在读地址写入之后,从机将对应寄存器的数据放到读数据通道上;
  上述条件翻译后,就是当AXI_ARREADY、AXI_ARVALID有效时发生传输;

3.如何根据AXI_WSTRB信号完成数据的写入?

  我们的数据写入也可不通过AXI_WSTRB指示,但为了接口设计的灵活性,我们通常会根据该信号对寄存器进行写入;
我们只需查询对应位是否为1,将对应的位数写入寄存器即可;其对应关系如下:
在这里插入图片描述我们只需查询对应位是否为1,将对应的位数写入寄存器即可;我们只需查询对应位是否为1,将对应的位数写入寄存器即可;


二、源码设计

2.1 写通道源码设计

1.写地址逻辑

//---------------------------write address input logic--------------------------------////transmit finish whe s_axi_awvalid=1 axi_awready = 1 s_axi_wvalid = 1always @(posedge s_axi_aclk) begin : address_input_proc_if(~s_axi_aresentn) beginaxi_awaddr <= 'b0;axi_awready <= 1'b0;aw_en <= 1'b1;end else beginif(aw_en && s_axi_awvalid && (~axi_awready) && (s_axi_wvalid))beginaw_en <= 1'b0;axi_awaddr <= s_axi_awaddr;axi_awready <= 1'b1;    endelse if(axi_bvalid && s_axi_bready)beginaw_en <= 1'b1;endelsebeginaxi_awready <= 1'b0;endendend

寄存地址的条件为: aw_en为高电平、s_axi_awvalid地址有效且axi_awready和s_axi_wvalid有效;
aw_en用来指示当前阶段是否完成一次读响应的发送;
2.写数据Ready逻辑

//-------------------------write data logic------------------------------------//always @(posedge s_axi_aclk) begin : write_data_signal_proc_if(~s_axi_aresentn) beginaxi_wready <= 1'b0;end else beginif(aw_en && s_axi_awvalid && s_axi_wvalid && ~axi_wready)beginaxi_wready <= 1'b1;endelsebeginaxi_wready <= 1'b0;endendend

当aw_en、s_axi_awvalid以及s_axi_wvalid有效时,将axi_wready拉高一个时钟周期后拉低,告诉主机从机已经完成接收;
3.写响应逻辑

//------------------------write back response logic--------------------------//always @(posedge s_axi_aclk) begin : wr_back_logic_proc_if(~s_axi_aresentn) beginaxi_bresp <= 'b0;axi_bvalid <= 1'b0;end else beginif(s_axi_awvalid & axi_awready & s_axi_wvalid & axi_wready & (~axi_bvalid))beginaxi_bresp <= 'b0;axi_bvalid <= 1'b1;endelsebeginaxi_bresp <= 'b0;axi_bvalid <= 1'b0;endendend

写响应发生在一次数据写入后,而当一次数据传输完成时,s_axi_awvalid、axi_awready、s_axi_wvalid和axi_wready均为高(握手协议在ready和valid信号为高时立即完成传输),此时将axi_bvalid信号拉高一个时钟周期;
4.寄存器写入逻辑

integer byte_index;integer reg_index;always @(posedge s_axi_aclk) begin : register_write_proc_if(~s_axi_aresentn) beginfor(reg_index = 0;reg_index<C_AXI_SLV_REG_NUM;reg_index=reg_index+1)beginslv_reg[reg_index] <= 'b0;endend else beginif(register_wr_en)beginfor(reg_index = 0;reg_index<C_AXI_SLV_REG_NUM;reg_index=reg_index+1)beginif(reg_index == (axi_awaddr >> ADDR_SHIFT))beginfor(byte_index = 0;byte_index <= (C_AXI_DATA_WIDTH/8)-1;byte_index = byte_index + 1)beginif(s_axi_wstrb[byte_index] == 1'b1)beginslv_reg[reg_index][(byte_index*8)+:8] <= s_axi_wdata[(byte_index*8)+:8];endendendendendendend

其中,ADDR_SHIFT的定义为:

localparam integer     ADDR_SHIFT = C_AXI_DATA_WIDTH/16;

其为地址转换为ID号所需要右移的位数;用数据位宽除以16即可;
如地址为0x08 右移两位为 0x02,为ID=2的寄存器;
第13行起,首先通过一个for循环找到需要赋值的寄存器;
然后再通过一个for循环,根据第一节中AXI_WSTRB指示的数据来对寄存器对应位数进行赋值,赋值逻辑为:

for(byte_index = 0;byte_index <= (C_AXI_DATA_WIDTH/8)-1;byte_index = byte_index + 1)
beginif(s_axi_wstrb[byte_index] == 1'b1)beginslv_reg[reg_index][(byte_index*8)+:8] <= s_axi_wdata[(byte_index*8)+:8];end
end

其中AXI_WSTRB的第0位对应是否对寄存器的低0-7位赋值;
AXI_WSTRB的第1位对应是否对寄存器的低8-15位赋值;
AXI_WSTRB的第2位对应是否对寄存器的低16-23位赋值;
AXI_WSTRB的第2位对应是否对寄存器的低23-31位赋值;

2.2 读通道源码设计

1.读地址逻辑:

//-----------------------read address logic---------------------------------//always @(posedge s_axi_aclk) begin : read_address_proc_if(~s_axi_aresentn) beginaxi_araddr <= 'b0;axi_arready <= 1'b0;end else beginif(~axi_arready & s_axi_arvalid)beginaxi_araddr <= s_axi_araddr;axi_arready <= 1'b1;endelsebeginaxi_arready <= 1'b0;endendend

读地址只需判断主机发来的读地址数据是否有效即可,即s_axi_arvalid是否有效;
若有效就将读地址放入读地址寄存器axi_araddr中,并拉高一个时钟周期的axi_arready信号通知主机完成接收;
2.读数据逻辑

//------------------------read data logic--------------------------------//always @(posedge s_axi_aclk) begin : read_data_proc_if(~s_axi_aresentn) beginaxi_rdata <= 'b0;axi_rvalid <= 1'b0;end else beginif(axi_arready & s_axi_arvalid & ~axi_rvalid)beginaxi_rvalid <= 1'b1;axi_rdata <= reg_data_out;endelsebeginaxi_rvalid <= 1'b0;endendend

读数据逻辑发生在读地址传输结束之后,即axi_arready 和 s_axi_arvalid均为有效时;
此时将寄存器读出数据打入读数据输出寄存器axi_rdata;并拉高一个时钟的axi_rvalid告诉主机当前读数据有效;
3.读寄存器逻辑

//------------------------read register logic-------------------------------//always @(*) begin : register_read_proc_if(~s_axi_aresentn) beginreg_data_out <= 'b0;end else begincase(axi_araddr >> ADDR_SHIFT)'d0: reg_data_out <= slv_reg[0];'d1: reg_data_out <= slv_reg[1];'d2: reg_data_out <= slv_reg[2];'d3: reg_data_out <= slv_reg[3];'d4: reg_data_out <= slv_reg[4];'d5: reg_data_out <= slv_reg[5];'d6: reg_data_out <= slv_reg[6];'d7: reg_data_out <= slv_reg[7];endcaseendend

读寄存器逻辑采用组合逻辑,将地址映射的寄存器中内容读出;

2.3 模板代码

接下来给出整个设计的模板代码:
1.逻辑部分

//AXI Slave interface
module axi_lite_logic#(//axi-lite parameter definition start here//data width / address widthparameter integer     C_AXI_SLV_REG_NUM = 8,parameter integer     C_AXI_DATA_WIDTH = 32,parameter integer     C_AXI_ADDR_WIDTH = $clog2(C_AXI_SLV_REG_NUM*4)+1)
(//system signals definitioninput  wire                                     s_axi_aclk,input  wire                                 s_axi_aresentn,  //write address signals definition      input  wire [C_AXI_ADDR_WIDTH - 1:0]         s_axi_awaddr,input  wire                                 s_axi_awvalid,output wire                                 s_axi_awready,//write data signals definitioninput  wire [C_AXI_DATA_WIDTH - 1:0]            s_axi_wdata,input  wire                                    s_axi_wvalid,output wire                                    s_axi_wready,   input  wire [(C_AXI_DATA_WIDTH/8) - 1:0]     s_axi_wstrb,//write response signals definitionoutput wire [1:0]                            s_axi_bresp,output wire                                 s_axi_bvalid,input  wire                                 s_axi_bready,//read address signals definitioninput  wire [C_AXI_ADDR_WIDTH - 1:0]          s_axi_araddr,input  wire                                 s_axi_arvalid,output wire                                 s_axi_arready,//read data signals definitionoutput wire [C_AXI_DATA_WIDTH - 1:0]            s_axi_rdata,output wire                                    s_axi_rvalid,input  wire                                 s_axi_rready,//read response signals definitionoutput wire                                  s_axi_rresp,//protect signals definitioninput  wire                                 s_axi_arprot
);localparam integer     ADDR_SHIFT = C_AXI_DATA_WIDTH/16;reg [C_AXI_ADDR_WIDTH - 1:0]    axi_awaddr;reg                            axi_awready;reg                                axi_wready;reg [1:0]                        axi_bresp;reg                             axi_bvalid;reg                                  aw_en;reg [C_AXI_ADDR_WIDTH - 1:0]    axi_araddr;reg                            axi_arready;reg                             axi_rvalid;reg [C_AXI_DATA_WIDTH - 1:0]     axi_rdata;reg [C_AXI_DATA_WIDTH - 1:0]  reg_data_out;wire                        register_wr_en;//register definitionreg [(C_AXI_DATA_WIDTH - 1) : 0]  slv_reg[0:(C_AXI_SLV_REG_NUM-1)];//inner logic definitionassign register_wr_en = axi_wready & s_axi_wvalid & axi_awready & s_axi_awvalid; //inner signal connectassign s_axi_awready = axi_awready;assign s_axi_wready = axi_wready;assign s_axi_bresp = axi_bresp;assign s_axi_bvalid = axi_bvalid;assign s_axi_arready = axi_arready;assign s_axi_rdata = axi_rdata;assign s_axi_rvalid = axi_rvalid;assign s_axi_rresp = 2'b00;//---------------------------write address input logic--------------------------------////transmit finish whe s_axi_awvalid=1 axi_awready = 1 s_axi_wvalid = 1always @(posedge s_axi_aclk) begin : address_input_proc_if(~s_axi_aresentn) beginaxi_awaddr <= 'b0;axi_awready <= 1'b0;aw_en <= 1'b1;end else beginif(aw_en && s_axi_awvalid && (~axi_awready) && (s_axi_wvalid))beginaw_en <= 1'b0;axi_awaddr <= s_axi_awaddr;axi_awready <= 1'b1;    endelse if(axi_bvalid && s_axi_bready)beginaw_en <= 1'b1;endelsebeginaxi_awready <= 1'b0;endendend//-------------------------write data logic------------------------------------//always @(posedge s_axi_aclk) begin : write_data_signal_proc_if(~s_axi_aresentn) beginaxi_wready <= 1'b0;end else beginif(aw_en && s_axi_awvalid && s_axi_wvalid && ~axi_wready)beginaxi_wready <= 1'b1;endelsebeginaxi_wready <= 1'b0;endendend//------------------------write back response logic--------------------------//always @(posedge s_axi_aclk) begin : wr_back_logic_proc_if(~s_axi_aresentn) beginaxi_bresp <= 'b0;axi_bvalid <= 1'b0;end else beginif(s_axi_awvalid & axi_awready & s_axi_wvalid & axi_wready & (~axi_bvalid))beginaxi_bresp <= 'b0;axi_bvalid <= 1'b1;endelsebeginaxi_bresp <= 'b0;axi_bvalid <= 1'b0;endendend//-----------------------read address logic---------------------------------//always @(posedge s_axi_aclk) begin : read_address_proc_if(~s_axi_aresentn) beginaxi_araddr <= 'b0;axi_arready <= 1'b0;end else beginif(~axi_arready & s_axi_arvalid)beginaxi_araddr <= s_axi_araddr;axi_arready <= 1'b1;endelsebeginaxi_arready <= 1'b0;endendend//------------------------read data logic--------------------------------//always @(posedge s_axi_aclk) begin : read_data_proc_if(~s_axi_aresentn) beginaxi_rdata <= 'b0;axi_rvalid <= 1'b0;end else beginif(axi_arready & s_axi_arvalid & ~axi_rvalid)beginaxi_rvalid <= 1'b1;axi_rdata <= reg_data_out;endelsebeginaxi_rvalid <= 1'b0;endendend//------------------------write register logic-------------------------------//integer byte_index;integer reg_index;always @(posedge s_axi_aclk) begin : register_write_proc_if(~s_axi_aresentn) beginfor(reg_index = 0;reg_index<C_AXI_SLV_REG_NUM;reg_index=reg_index+1)beginslv_reg[reg_index] <= 'b0;endend else beginif(register_wr_en)beginfor(reg_index = 0;reg_index<C_AXI_SLV_REG_NUM;reg_index=reg_index+1)beginif(reg_index == (axi_awaddr >> ADDR_SHIFT))beginfor(byte_index = 0;byte_index <= (C_AXI_DATA_WIDTH/8)-1;byte_index = byte_index + 1)beginif(s_axi_wstrb[byte_index] == 1'b1)beginslv_reg[reg_index][(byte_index*8)+:8] <= s_axi_wdata[(byte_index*8)+:8];endendendendendendend//------------------------read register logic-------------------------------//always @(*) begin : register_read_proc_if(~s_axi_aresentn) beginreg_data_out <= 'b0;end else begincase(axi_araddr >> ADDR_SHIFT)'d0: reg_data_out <= slv_reg[0];'d1: reg_data_out <= slv_reg[1];'d2: reg_data_out <= slv_reg[2];'d3: reg_data_out <= slv_reg[3];'d4: reg_data_out <= slv_reg[4];'d5: reg_data_out <= slv_reg[5];'d6: reg_data_out <= slv_reg[6];'d7: reg_data_out <= slv_reg[7];endcaseendend
endmodule

2.顶层

module axi_lite_logic_top#(parameter integer     C_AXI_SLV_REG_NUM = 8,parameter integer     C_AXI_DATA_WIDTH = 32,parameter integer     C_AXI_ADDR_WIDTH = $clog2(C_AXI_SLV_REG_NUM*4)+1) (//system signals definitioninput  wire                                     S_AXI_ACLK,input  wire                                 S_AXI_ARESENTN,  //write address signals definition      input  wire [C_AXI_ADDR_WIDTH - 1:0]         S_AXI_AWADDR,input  wire                                 S_AXI_AWVALID,output wire                                 S_AXI_AWREADY,//write data signals definitioninput  wire [C_AXI_DATA_WIDTH - 1:0]            S_AXI_WDATA,input  wire                                    S_AXI_WVALID,output wire                                    S_AXI_WREADY,   input  wire [(C_AXI_DATA_WIDTH/8) - 1:0]     S_AXI_WSTRB,//write response signals definitionoutput wire [1:0]                            S_AXI_BRESP,output wire                                 S_AXI_BVALID,input  wire                                 S_AXI_BREADY,//read address signals definitioninput  wire [C_AXI_ADDR_WIDTH - 1:0]         S_AXI_ARADDR,input  wire                                S_AXI_ARVALID,output wire                                S_AXI_ARREADY,//read data signals definitionoutput wire [C_AXI_DATA_WIDTH - 1:0]            S_AXI_RDATA,output wire                                    S_AXI_RVALID,input  wire                                 S_AXI_RREADY,//read response signals definitionoutput wire                                  S_AXI_RRESP,//protect signals definitioninput  wire                                 S_AXI_ARPROT
);axi_lite_logic#(//axi-lite parameter definition start here//data width / address width.C_AXI_SLV_REG_NUM (C_AXI_SLV_REG_NUM),.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH))axi_lite_logic_inist0
(//system signals definition.s_axi_aclk(S_AXI_ACLK),.s_axi_aresentn(S_AXI_ARESENTN),  //write address signals definition      .s_axi_awaddr(S_AXI_AWADDR),.s_axi_awvalid(S_AXI_AWVALID),.s_axi_awready(S_AXI_AWREADY),//write data signals definition.s_axi_wdata(S_AXI_WDATA),.s_axi_wvalid(S_AXI_WVALID),.s_axi_wready(S_AXI_WREADY),   .s_axi_wstrb(S_AXI_WSTRB),//write response signals definition.s_axi_bresp(S_AXI_BRESP),.s_axi_bvalid(S_AXI_BVALID),.s_axi_bready(S_AXI_BREADY),//read address signals definition.s_axi_araddr(S_AXI_ARADDR),.s_axi_arvalid(S_AXI_ARVALID),.s_axi_arready(S_AXI_ARREADY),//read data signals definition.s_axi_rdata(S_AXI_RDATA),.s_axi_rvalid(S_AXI_RVALID),.s_axi_rready(S_AXI_RREADY),//read response signals definition.s_axi_rresp(S_AXI_RRESP),//protect signals definition.s_axi_arprot(S_AXI_ARPROT)
);module axi_lite_logic_top#(parameter integer     C_AXI_SLV_REG_NUM = 8,parameter integer     C_AXI_DATA_WIDTH = 32,parameter integer     C_AXI_ADDR_WIDTH = $clog2(C_AXI_SLV_REG_NUM*4)+1) (//system signals definitioninput  wire                                     S_AXI_ACLK,input  wire                                 S_AXI_ARESENTN,  //write address signals definition      input  wire [C_AXI_ADDR_WIDTH - 1:0]         S_AXI_AWADDR,input  wire                                 S_AXI_AWVALID,output wire                                 S_AXI_AWREADY,//write data signals definitioninput  wire [C_AXI_DATA_WIDTH - 1:0]            S_AXI_WDATA,input  wire                                    S_AXI_WVALID,output wire                                    S_AXI_WREADY,   input  wire [(C_AXI_DATA_WIDTH/8) - 1:0]     S_AXI_WSTRB,//write response signals definitionoutput wire [1:0]                            S_AXI_BRESP,output wire                                 S_AXI_BVALID,input  wire                                 S_AXI_BREADY,//read address signals definitioninput  wire [C_AXI_ADDR_WIDTH - 1:0]         S_AXI_ARADDR,input  wire                                S_AXI_ARVALID,output wire                                S_AXI_ARREADY,//read data signals definitionoutput wire [C_AXI_DATA_WIDTH - 1:0]            S_AXI_RDATA,output wire                                    S_AXI_RVALID,input  wire                                 S_AXI_RREADY,//read response signals definitionoutput wire                                  S_AXI_RRESP,//protect signals definitioninput  wire                                 S_AXI_ARPROT
);axi_lite_logic#(//axi-lite parameter definition start here//data width / address width.C_AXI_SLV_REG_NUM (C_AXI_SLV_REG_NUM),.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH))axi_lite_logic_inist0
(//system signals definition.s_axi_aclk(S_AXI_ACLK),.s_axi_aresentn(S_AXI_ARESENTN),  //write address signals definition      .s_axi_awaddr(S_AXI_AWADDR),.s_axi_awvalid(S_AXI_AWVALID),.s_axi_awready(S_AXI_AWREADY),//write data signals definition.s_axi_wdata(S_AXI_WDATA),.s_axi_wvalid(S_AXI_WVALID),.s_axi_wready(S_AXI_WREADY),   .s_axi_wstrb(S_AXI_WSTRB),//write response signals definition.s_axi_bresp(S_AXI_BRESP),.s_axi_bvalid(S_AXI_BVALID),.s_axi_bready(S_AXI_BREADY),//read address signals definition.s_axi_araddr(S_AXI_ARADDR),.s_axi_arvalid(S_AXI_ARVALID),.s_axi_arready(S_AXI_ARREADY),//read data signals definition.s_axi_rdata(S_AXI_RDATA),.s_axi_rvalid(S_AXI_RVALID),.s_axi_rready(S_AXI_RREADY),//read response signals definition.s_axi_rresp(S_AXI_RRESP),//protect signals definition.s_axi_arprot(S_AXI_ARPROT)
);endmodule

这里为了后面方便在Vivado上对测试模块进行封装,顶层端口的定义需要按一定的格式来进行;
这样在进行IP封装时,工具会自动将这些端口划分为AXI总线,否则需要自己手动封装AXI接口;
参数定义

  • C_AXI_SLV_REG_NUM:表示寄存器的数目;
  • C_AXI_DATA_WIDTH:数据位宽;
  • C_AXI_ADDR_WIDTH:地址位宽,根据寄存器数自动计算;

三、仿真

  • 仿真软件:modelsim
  • 仿真文件:逻辑文件

仿真源码:

module axi_lite_tb ();parameter integer     C_AXI_SLV_REG_NUM = 5;parameter integer     C_AXI_DATA_WIDTH = 32;parameter integer     C_AXI_ADDR_WIDTH = $clog2(C_AXI_SLV_REG_NUM*4)+1;reg                                     s_axi_aclk;reg                                 s_axi_aresentn;  reg [C_AXI_ADDR_WIDTH - 1:0]         s_axi_awaddr;reg                                 s_axi_awvalid;wire                               s_axi_awready;reg [C_AXI_DATA_WIDTH - 1:0]            s_axi_wdata;reg                                    s_axi_wvalid;wire                                s_axi_wready;   wire [(C_AXI_DATA_WIDTH/8) - 1:0]     s_axi_wstrb;wire [1:0]                           s_axi_bresp;wire                                s_axi_bvalid;wire                                s_axi_bready;reg [C_AXI_ADDR_WIDTH - 1:0]         s_axi_araddr;reg                                s_axi_arvalid;wire                               s_axi_arready;wire [C_AXI_DATA_WIDTH - 1:0]        s_axi_rdata;wire                                s_axi_rvalid;wire                                s_axi_rready;wire                                 s_axi_rresp;reg                                 s_axi_arprot;assign s_axi_wstrb = 4'b1111;assign  s_axi_bready = 1'b1;assign s_axi_rready = 1'b1;initial begins_axi_aclk = 0;forever begin#1 s_axi_aclk = ~s_axi_aclk;endendinitial begins_axi_aresentn = 0;#2 s_axi_aresentn = 1;s_axi_awaddr = 5'h00;s_axi_wdata = 32'he3;//test write logicwhile(s_axi_awaddr <= 5'h10)begins_axi_awvalid = 1'b1;s_axi_wvalid = 1'b1;#4s_axi_awvalid = 1'b0;s_axi_wvalid = 1'b0;#2s_axi_awaddr = s_axi_awaddr+5'h4;s_axi_wdata = s_axi_wdata+1;end//test read logics_axi_araddr = 5'h00;while(s_axi_araddr <= 5'h10)begins_axi_arvalid = 1'b1;#4s_axi_arvalid = 1'b0;#2s_axi_araddr = s_axi_araddr+5'h4;endendaxi_lite_logic#(.C_AXI_SLV_REG_NUM(C_AXI_SLV_REG_NUM),.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH))axi_lite_logic_inist
(.s_axi_aclk(s_axi_aclk),.s_axi_aresentn(s_axi_aresentn),  .s_axi_awaddr(s_axi_awaddr),.s_axi_awvalid(s_axi_awvalid),.s_axi_awready(s_axi_awready),.s_axi_wdata(s_axi_wdata),.s_axi_wvalid(s_axi_wvalid),.s_axi_wready(s_axi_wready),   .s_axi_wstrb(s_axi_wstrb),.s_axi_bresp(s_axi_bresp),.s_axi_bvalid(s_axi_bvalid),.s_axi_bready(s_axi_bready),.s_axi_araddr(s_axi_araddr),.s_axi_arvalid(s_axi_arvalid),.s_axi_arready(s_axi_arready),.s_axi_rdata(s_axi_rdata),.s_axi_rvalid(s_axi_rvalid),.s_axi_rready(s_axi_rready),.s_axi_rresp(s_axi_rresp),.s_axi_arprot(s_axi_arprot)
);
endmodule

首先测试写入逻辑,对寄存器0-7写入e3,e4,e5,e6,e7
然后依次读出寄存器的值
仿真结果:
在这里插入图片描述


总结

  在本篇中给出了AXI_Lite从机接口的模板文件设计,在下一篇中将基于模板文件设计一SOC系统,进行软硬件协同仿真,完成板级验证;

这篇关于AMBA协议AXI-Lite(AXI-Lite从机代码设计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497949

相关文章

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪