【正点原子STM32连载】第十一章 按键输入实验 摘自【正点原子】APM32E103最小系统板使用指南

本文主要是介绍【正点原子STM32连载】第十一章 按键输入实验 摘自【正点原子】APM32E103最小系统板使用指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)实验平台:正点原子APM32E103最小系统板
2)平台购买地址:https://detail.tmall.com/item.htm?id=609294757420
3)全套实验源码+手册+视频下载地址: http://www.openedv.com/docs/boards/xiaoxitongban

第十一章 按键输入实验

上一章中介绍了GPIO的输出模式,并用其控制LED的亮灭。在实际的应用尝尽中,还会需要使用到GPIO的输入模式,来获取外部的输入信号,例如获取按键的状态。通过本章的学习,读者将学习到GPIO作为输入模式的使用。
本章分为如下几个小节:
11.1 硬件设计
11.2 程序设计
11.3 下载验证

11.1 硬件设计
11.1.1 例程功能

  1. 按下KEY0按键可控制LED0状态翻转,按下KEY_UP按键可控制LED1翻转。
    11.1.2 硬件资源
  2. LED
    LED0 - PB5
    LED1 - PE5
  3. 按键
    KEY0 - PE4
    KEY_UP - PA0
    11.1.3 原理图
    本章实验使用的两个APM32E103最小系统板板载按键,分别为KEY0按键和KEY_UP按键,其于板载MCU的连接原理图,如下图所示:

在这里插入图片描述

图11.1.3.1 按键与MCU的连接原理图
从上面的原理图中可以看出,KEY0按键和KEY_UP按键的一端连接到了电源正极,而另一端分别与MCU的PE4引脚和PA0引脚相连接,因此当任意一个按键被按下时,MCU对应的引脚都能够读取到高电平的状态,而当松开按键后,MCU对应的引脚读取到的电平状态却是不确定的,因此用于读取KEY0按键和KEY_UP按键的PE4引脚和PA0引脚不仅要配置为输入模式,还需要配置成下拉,使对应引脚在悬空时被下拉在电源负极。
11.2 程序设计
11.2.1 Geehy标准库的GPIO驱动
本章实验中要通过读取GPIO引脚的输入状态来判断按键是否被按下,以此来控制对应LED的状态翻转,因此对于判断按键的状态,需要一下几个步骤:
①:配置GPIO引脚为输入模式和下拉
②:读取GPIO引脚的输入状态
在Geehy标准库中对应的驱动函数如下:
①:配置GPIO引脚
请见第10.2.1小节中配置GPIO引脚的相关内容。
②:读取GPIO引脚输入电平
该函数用于读取GPIO引脚的输入电平(高电平或低电平),其函数原型如下所示:
uint8_t GPIO_ReadInputBit(GPIO_T* port, uint16_t pin);
该函数的形参描述,如下表所示:
在这里插入图片描述

表11.2.1.1 函数GPIO_ReadInputBit()形参描述
该函数的返回值描述,如下表所示:
返回值 描述
BIT_SET GPIO引脚输入的电平为高电平
BIT_RESET GPIO引脚输入的电平为低电平
表11.2.1.2 函数GPIO_ReadInputBit()返回值描述
该函数的使用示例,如下所示:

#include "apm32e10x.h"
#include "apm32e10x_gpio.h"void example_fun(void)
{uint8_t value;/* 读取PA0引脚输入电平 */value = GPIO_ReadInputBit(GPIOA, GPIO_PIN_0);if (value == BIT_SET){/* Do something. */}else{/* Do something. */}
}

11.2.2 按键驱动
按键驱动主要就是读取GPIO引脚的输入状态,以此判断按键是否被按下,本章实验中,按键驱动的驱动代码包括key.c和key.h两个文件。
根据原理图可知,应当将PE4引脚和PA0引脚配置为下拉输入模式,并在需要读取KEY0按键(KEY_UP按键)状态的时候,读取PE4引脚(PA0引脚)的输入电平,若读取到PE4引脚(PA0引脚)的输入电平为高电平,则说明KEY0按键(KEY_UP按键)被按下,反之,则说明KEY0按键(KEY_UP按键)没有被按下。
按键驱动中,对引脚的定义,如下所示:

#define KEY0_GPIO_PORT			GPIOE
#define KEY0_GPIO_PIN			GPIO_PIN_4
#define KEY0_GPIO_CLK_ENABLE()                                \do {														\RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOE);	\} while (0)#define WKUP_GPIO_PORT			GPIOA
#define WKUP_GPIO_PIN			GPIO_PIN_0
#define WKUP_GPIO_CLK_ENABLE()								\do {														\RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOA);	\} while (0)

按键驱动中,操作引脚的定义,如下所示:
#define KEY0 GPIO_ReadInputBit(KEY0_GPIO_PORT, KEY0_GPIO_PIN)
#define WK_UP GPIO_ReadInputBit(WKUP_GPIO_PORT, WKUP_GPIO_PIN)
按键驱动中,按键的初始化函数,如下所示:

/*** @brief	初始化按键* @param	无* @retval	无*/
void key_init(void)
{GPIO_Config_T gpio_init_struct;KEY0_GPIO_CLK_ENABLE();WKUP_GPIO_CLK_ENABLE();gpio_init_struct.pin	= KEY0_GPIO_PIN;			/* KEY0引脚 */
gpio_init_struct.mode	= GPIO_MODE_IN_PD;			/* 下拉输入 */
gpio_init_struct.speed = GPIO_SPEED_50MHz;		    /* 高速 */GPIO_Config(KEY0_GPIO_PORT, &gpio_init_struct);	/* 配置KEY0引脚 */gpio_init_struct.pin	= WKUP_GPIO_PIN;		    /* KEY_UP引脚 */
gpio_init_struct.mode	= GPIO_MODE_IN;			    /* 下拉输入 */
gpio_init_struct.speed = GPIO_SPEED_50MHz;			/* 高速 */GPIO_Config(WKUP_GPIO_PORT, &gpio_init_struct);	/* 配置KEY_UP引脚 */
}

按键的初始化函数中,使能了KEY0按键和KEY_UP按键对应引脚的GPIO端口时钟,并将其配置为输入模式和下拉。
按键的驱动中,扫描按键状态的函数,如下所示:

/*** @brief	扫描按键* @note	该函数具有响应优先级(同时按下多个按键):KEY_UP > KEY0* @param	mode: 扫描模式* @arg 	不支持连按(当按键按下不放时,只有第一次调用会返回键值,* 			必须松开以后,再次按下才会返回其他键值)* @arg 	支持连续按(当按键按下不放时,每次调用该函数都会返回键值)* @retval	键值* @arg	    KEY0_PRES: KEY0按下* @arg	    WKUP_PRES: KEY_UP按下*/
uint8_t key_scan(uint8_t mode)
{static uint8_t key_up = 1;					/* 按键松开标志 */uint8_t keyval = 0;if (mode == 1)								/* 支持连按 */{key_up = 1;}/* 按键松开标志为1,且有按键按下 */if ((key_up == 1) && ((KEY0 == 1) || (WK_UP == 1))){key_up = 0;delay_ms(10);					        /* 去抖动 */if (KEY0 == 1){keyval = KEY0_PRES;}if (WK_UP == 1){keyval = WKUP_PRES;}}else if ((KEY0 == 0) && (WK_UP == 0))		/* 没有按键按下,标记按键松开 */{key_up = 1;}return keyval;								/* 返回键值 */
}

以上函代码就实现了按键扫描,且具有按键消抖的功能。
11.2.3 实验应用代码
本实验的应用代码,如下所示:

int main(void)
{uint8_t key;NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_4);	/* 设置中断优先级分组为组4 */sys_apm32_clock_init(15);							/* 配置系统时钟 */delay_init(120);									/* 初始化延时功能 */usart_init(115200);									/* 初始化串口 */led_init();											/* 初始化LED */
key_init();											/* 初始化按键 */	
LED0(0);											/* 先点亮LED0 */while (1){key = key_scan(0);		    				    /* 扫描按键 */if (key)
{ 
switch (key){case WKUP_PRES:						    /* KEY_UP被按下 */{LED0_TOGGLE();					    /* LED1状态翻转 */break;}case KEY0_PRES:						    /* KEY0被按下 */{LED0_TOGGLE();					    /* LED0状态翻转 */LED1_TOGGLE();					    /* LED1状态翻转 */break;}
}
}else
{
delay_ms(10);
}}
}

可以看到应用代码中,在初始化完LED和按键并点亮一个LED灯后,就进入了一个while循环,在循环中,每间隔10毫秒就调用key_scan()函数扫描以此按键的状态,如果扫描到KEY0按键或KEY_UP按键被按下,则反转对应LED的亮灭状态。
11.3 下载验证
在完成编译和烧录操作后,可以看到板子上的LED0是处于亮起的状态而LED1处于熄灭状态,若此时按下并释放一次KEY0按键,则能够看到LED0和LED1的亮灭状态发生了一次翻转,同样的,若此时按下并释放一次KEY_UP按键,则能够看到LED0的亮灭状态发生了一次翻转,与预期的实验现象效果相符。

这篇关于【正点原子STM32连载】第十一章 按键输入实验 摘自【正点原子】APM32E103最小系统板使用指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497885

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、