【Nature】AlphaGo赢了围棋,但玩量子计算游戏人的直觉强过机器

2023-12-15 18:59

本文主要是介绍【Nature】AlphaGo赢了围棋,但玩量子计算游戏人的直觉强过机器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Nature日前刊发论文,丹麦奥胡斯大学的科学家设计了一款量子计算游戏,征召300名普通公众参与,结果发现在玩这款游戏时人类在许多方面都强过计算机,但具体原因为何目前还不得而知。这一研究表明,在解决诸如量子计算这样复杂、超出常理的问题时,人类智能仍然超越机器智能,并且结合二者或将得到更好的结果。

 

之前新智元发表过一篇文章:AlphaGo输了,但16%的人对人类未来感到绝望。今天我们带来了一条好消息:在玩一款量子计算游戏时,普通人的表现要优于最优秀的计算机。

 

Nature日前刊发论文,丹麦奥胡斯大学的科学家想要制造一款可扩展的量子计算机原型,但苦于无法找到有效的量子算法。因此,他们想到了借助群众的力量——此前已经有科研项目(比如蛋白质折叠)通过集合公众玩游戏得到了解决——设计了一款叫做“量子移动”(Quantum Moves)电子游戏,其通关策略就是研究者想要的有效量子算法。

 

在实验中,研究者召集到300名公众,这些人最大的特征就是——都是普通人:没有量子物理背景,也没有高深的数学造诣,年龄、职业五花八门。对他们而言,所做的就是玩一款电子游戏。


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=
游戏中,玩家手指(黑色指针标示处)触碰的地方会形成一个波谷,玩家要用这个新的波将右边波里的液体带回起点,液体象征处于量子状态的原子。玩家必须找到一条路径,以最快的速度实现液体完好转移,避免出现上图中最底下一幅的情况:仍然有液体残留在右边的波里。这个游戏情景很好地模拟了量子算法所需,让能量(液体)保持不变的情况下,从一个地方尽快转移到另一个地方(从右边的波转移到左边的波)。参考文首动图。来源:nature.com


结果发现,在玩这款游戏时,人类玩家的解决方案不但要优于计算机所设计的最佳策略,而且人类玩家在量子计算速度上也比计算机更快。不仅如此,把人类玩家的解决方案输入计算机进行优化后,超过半数的优化结果都要优于计算机原来的算法。同时,研究者将人类玩家解法和计算机算法相结合,得出了混合算法。其中,最优的两种混合算法比单凭计算机产生的最优算法要快很多


研究者随后对这些人类玩家及其通关策略做了进一步分析。结果发现,从表面上看,对物理更感兴趣的人,游戏玩得也更好。但是,人类玩家对量子物理的了解程度与游戏表现无关。而且,虽然男性每天玩游戏次数更多,但综合看女性通关成绩比男性更好。


论文通讯作者 Jacob Sherson 在接受 nature 记者采访时表示:人类策略之所以优于计算机算法,是因为人类更能把握问题的本质。Sherson 还表示,他们的这一研究结果表明科学家以前可能低估了人类智能;此外,在解决量子物理问题时,借助公众的智慧或许是一个不错的方法。

 

芬兰图尔库大学的量子物理学研究者 Sabrina Maniscalco 在 nature 发表评论指出:这个游戏本身设计得很巧妙,把一个具体的量子计算问题游戏化,得到了普通人胜过计算机的结果;但这一结论是否具普适性还有待商榷。不过,Maniscalco 认为 Sherson 等人的思路值得参考。

 

至于为什么不具备量子物理背景并且数学知识也不够资深的人能够表现得比机器还要好,Maniscalco 认为这是因为在游戏当中人类玩家可以尝试与现实世界不同的解决方案,或许正是这种跳出常理外的思维,也就是直觉帮助了他们。

 

其他量子物理研究者也表示,他们对普通人也能靠直觉解决量子物理问题感到意外,但这一结果本身并非出乎意料,因为科学家也经常凭直觉解决量子物理问题,至少在数学层面上是如此。

 

虽然没有弄清具体原因,这篇论文表明至少在这款量子计算游戏上,普通人比计算机要强,而且结合人类智能和机器智能可以得到更好的算法。

文章转载自新智元公众号 原文链接

这篇关于【Nature】AlphaGo赢了围棋,但玩量子计算游戏人的直觉强过机器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497508

相关文章

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

国产游戏崛起:技术革新与文化自信的双重推动

近年来,国产游戏行业发展迅猛,技术水平和作品质量均得到了显著提升。特别是以《黑神话:悟空》为代表的一系列优秀作品,成功打破了过去中国游戏市场以手游和网游为主的局限,向全球玩家展示了中国在单机游戏领域的实力与潜力。随着中国开发者在画面渲染、物理引擎、AI 技术和服务器架构等方面取得了显著进展,国产游戏正逐步赢得国际市场的认可。然而,面对全球游戏行业的激烈竞争,国产游戏技术依然面临诸多挑战,未来的

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3