uscao 线段树成段更新操作及Lazy思想(POJ3468解题报告)

2023-12-15 15:58

本文主要是介绍uscao 线段树成段更新操作及Lazy思想(POJ3468解题报告),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

线段树成段更新操作及Lazy思想(POJ3468解题报告)

标签: treequerybuildn2cstruct
  5756人阅读  评论(0)  收藏  举报
  分类:
 

就直接那POJ上面的例题来说吧,http://poj.org/problem?id=3468。

此题题意很好懂:

 给你N个数,Q个操作,操作有两种,‘Q a b ’是询问a~b这段数的和,‘C a b c’是把a~b这段数都加上c。

需要用到线段树的,update:成段增减,query:区间求和

介绍Lazy思想:lazy-tag思想,记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。

在此通俗的解释我理解的Lazy意思,比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,它的节点标记为rt,这时tree[rt].l == a && tree[rt].r == b 这时我们可以一步更新此时rt节点的sum[rt]的值,sum[rt] += c * (tree[rt].r - tree[rt].l + 1),注意关键的时刻来了,如果此时按照常规的线段树的update操作,这时候还应该更新rt子节点的sum[]值,而Lazy思想恰恰是暂时不更新rt子节点的sum[]值,到此就return,直到下次需要用到rt子节点的值的时候才去更新,这样避免许多可能无用的操作,从而节省时间 。

下面通过具体的代码来说明之。(此处的函数名和宏学习了小HH的代码风格)

在此先介绍下代码中的函数说明:

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

宏定义左儿子lson和右儿子rson,貌似用宏的速度要慢。

PushUp(rt):通过当前节点rt把值递归向上更新到根节点

PushDown(rt):通过当前节点rt递归向下去更新rt子节点的值

rt表示当前子树的根(root),也就是当前所在的结点

[cpp]  view plain copy
print ?
  1. __int64 sum[N<<2],add[N<<2];  
  2. struct Node  
  3. {  
  4.     int l,r;  
  5.     int mid()  
  6.     {  
  7.         return (l+r)>>1;  
  8.     }  
  9. } tree[N<<2];  
这里定义数据结构sum用来存储每个节点的子节点数值的总和,add用来记录该节点的每个数值应该加多少

tree[].l tree[].r分别表示某个节点的左右区间,这里的区间是闭区间

下面直接来介绍update函数,Lazy操作主要就是用在这里

[cpp]  view plain copy
print ?
  1. void update(int c,int l,int r,int rt)//表示对区间[l,r]内的每个数均加c,rt是根节点  
  2. {  
  3.     if(tree[rt].l == l && r == tree[rt].r)  
  4.     {  
  5.         add[rt] += c;  
  6.         sum[rt] += (__int64)c * (r-l+1);  
  7.         return;  
  8.     }  
  9.     if(tree[rt].l == tree[rt].r) return;  
  10.     PushDown(rt,tree[rt].r - tree[rt].l + 1);  
  11.     int m = tree[rt].mid();  
  12.     if(r <= m) update(c,l,r,rt<<1);  
  13.     else if(l > m) update(c,l,r,rt<<1|1);  
  14.     else  
  15.     {  
  16.         update(c,l,m,rt<<1);  
  17.         update(c,m+1,r,rt<<1|1);  
  18.     }  
  19.     PushUp(rt);  
  20. }  

if(tree[rt].l == l && r == tree[rt].r) 这里就是用到Lazy思想的关键时刻 正如上面说提到的,这里首先更新该节点的sum[rt]值,然后更新该节点具体每个数值应该加多少即add[rt]的值,注意此时整个函数就运行完了,直接return,而不是还继续向子节点继续更新,这里就是Lazy思想,暂时不更新子节点的值。

那么什么时候需要更新子节点的值呢?答案是在某部分update操作的时候需要用到那部分没有更新的节点的值的时候,这里可能有点绕口。这时就掉用PushDown()函数更新子节点的数值。

[cpp]  view plain copy
print ?
  1. void PushDown(int rt,int m)  
  2. {  
  3.     if(add[rt])  
  4.     {  
  5.         add[rt<<1] += add[rt];  
  6.         add[rt<<1|1] += add[rt];  
  7.         sum[rt<<1] += add[rt] * (m - (m>>1));  
  8.         sum[rt<<1|1] += add[rt] * (m>>1);  
  9.         add[rt] = 0;//更新后需要还原  
  10.     }  
  11. }  
PushDown就是从当前根节点rt向下更新每个子节点的值,这段代码读者可以自己好好理解,这也是Lazy的关键。

接着就是update操作的三个if语句了,这里我曾经一直不理解,多亏nyf队友的指点,借此感谢之。


下面再解释query函数,也就是用这个函数来求区间和

[cpp]  view plain copy
print ?
  1. __int64 query(int l,int r,int rt)  
  2. {  
  3.     if(l == tree[rt].l && r == tree[rt].r)  
  4.     {  
  5.         return sum[rt];  
  6.     }  
  7.     PushDown(rt,tree[rt].r - tree[rt].l + 1);  
  8.     int m = tree[rt].mid();  
  9.     __int64 res = 0;  
  10.     if(r <= m) res += query(l,r,rt<<1);  
  11.     else if(l > m) res += query(l,r,rt<<1|1);  
  12.     else  
  13.     {  
  14.        res += query(l,m,rt<<1);  
  15.        res += query(m+1,r,rt<<1|1);  
  16.     }  
  17.     return res;  
  18. }  

第一个if还是区间的判断和前面update的一样,到这里就可以知道答案了,所以就直接return。

接下来的查询就需要用到rt子节点的值了,由于我们用了Lazy操作,这段的数值还没有更新,因此我们需要调用PushDown函数去更新之,满足if(add[rt])就说明还没有更新。


到这里整个Lazy思想就算介绍结束了,可能我的语言组织不是很好,如果有不理解的地方可以给我留言,我再解释大家的疑惑。

PS:今天总算是对线段树入门了。

这里推荐一下,完全版线段树网址

下面贴出POJ3468完整的代码http://www.notonlysuccess.com/index.php/segment-tree-complete/,这里面有很飘逸的线段树代码,表示其update和query写的很巧妙,代码量也比较少,大家可以去学习。

[cpp]  view plain copy
print ?
  1. #include <iostream>  
  2. #include <cstdio>  
  3. using namespace std;  
  4. const int N = 100005;  
  5. #define lson l,m,rt<<1  
  6. #define rson m+1,r,rt<<1|1  
  7.   
  8. __int64 sum[N<<2],add[N<<2];  
  9. struct Node  
  10. {  
  11.     int l,r;  
  12.     int mid()  
  13.     {  
  14.         return (l+r)>>1;  
  15.     }  
  16. } tree[N<<2];  
  17.   
  18. void PushUp(int rt)  
  19. {  
  20.     sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
  21. }  
  22.   
  23. void PushDown(int rt,int m)  
  24. {  
  25.     if(add[rt])  
  26.     {  
  27.         add[rt<<1] += add[rt];  
  28.         add[rt<<1|1] += add[rt];  
  29.         sum[rt<<1] += add[rt] * (m - (m>>1));  
  30.         sum[rt<<1|1] += add[rt] * (m>>1);  
  31.         add[rt] = 0;  
  32.     }  
  33. }  
  34.   
  35. void build(int l,int r,int rt)  
  36. {  
  37.     tree[rt].l = l;  
  38.     tree[rt].r = r;  
  39.     add[rt] = 0;  
  40.     if(l == r)  
  41.     {  
  42.         scanf("%I64d",&sum[rt]);  
  43.         return ;  
  44.     }  
  45.     int m = tree[rt].mid();  
  46.     build(lson);  
  47.     build(rson);  
  48.     PushUp(rt);  
  49. }  
  50.   
  51. void update(int c,int l,int r,int rt)  
  52. {  
  53.     if(tree[rt].l == l && r == tree[rt].r)  
  54.     {  
  55.         add[rt] += c;  
  56.         sum[rt] += (__int64)c * (r-l+1);  
  57.         return;  
  58.     }  
  59.     if(tree[rt].l == tree[rt].r) return;  
  60.     PushDown(rt,tree[rt].r - tree[rt].l + 1);  
  61.     int m = tree[rt].mid();  
  62.     if(r <= m) update(c,l,r,rt<<1);  
  63.     else if(l > m) update(c,l,r,rt<<1|1);  
  64.     else  
  65.     {  
  66.         update(c,l,m,rt<<1);  
  67.         update(c,m+1,r,rt<<1|1);  
  68.     }  
  69.     PushUp(rt);  
  70. }  
  71.   
  72. __int64 query(int l,int r,int rt)  
  73. {  
  74.     if(l == tree[rt].l && r == tree[rt].r)  
  75.     {  
  76.         return sum[rt];  
  77.     }  
  78.     PushDown(rt,tree[rt].r - tree[rt].l + 1);  
  79.     int m = tree[rt].mid();  
  80.     __int64 res = 0;  
  81.     if(r <= m) res += query(l,r,rt<<1);  
  82.     else if(l > m) res += query(l,r,rt<<1|1);  
  83.     else  
  84.     {  
  85.        res += query(l,m,rt<<1);  
  86.        res += query(m+1,r,rt<<1|1);  
  87.     }  
  88.     return res;  
  89. }  
  90.   
  91. int main()  
  92. {  
  93.     int n,m;  
  94.     while(~scanf("%d %d",&n,&m))  
  95.     {  
  96.         build(1,n,1);  
  97.         while(m--)  
  98.         {  
  99.             char ch[2];  
  100.             scanf("%s",ch);  
  101.             int a,b,c;  
  102.             if(ch[0] == 'Q')  
  103.             {  
  104.                 scanf("%d %d", &a,&b);  
  105.                 printf("%I64d\n",query(a,b,1));  
  106.             }  
  107.   
  108.             else  
  109.             {  
  110.                 scanf("%d %d %d",&a,&b,&c);  
  111.                 update(c,a,b,1);  
  112.             }  
  113.         }  
  114.     }  
  115.     return 0;  
  116. }  

这篇关于uscao 线段树成段更新操作及Lazy思想(POJ3468解题报告)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/497011

相关文章

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

MySQL 临时表与复制表操作全流程案例

《MySQL临时表与复制表操作全流程案例》本文介绍MySQL临时表与复制表的区别与使用,涵盖生命周期、存储机制、操作限制、创建方法及常见问题,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随小... 目录一、mysql 临时表(一)核心特性拓展(二)操作全流程案例1. 复杂查询中的临时表应用2. 临时

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更