【视点合成】代码解读:生成demo视频

2023-12-15 12:12

本文主要是介绍【视点合成】代码解读:生成demo视频,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

变换工具

def render_3dphoto(src_imgs,          # 输入的源图像,维度为 [batch_size, 3, height, width]mpi_all_src,       # 输入的所有源图像的MPI,维度为 [batch_size, num_planes, 4, height, width]disparity_all_src, # 所有源图像的视差信息,维度为 [batch_size, num_planes]k_src,             # 源相机的内参矩阵,维度为 [batch_size, 3, 3]k_tgt,             # 目标相机的内参矩阵,维度为 [batch_size, 3, 3]save_path,         # 渲染视频的保存路径
):

disparity 也就是深度。

单应性变换

使用HomographySample变换。utils.mpi.homography_sampler.HomographySample


class HomographySample:"""处理与单应性变换相关的操作,它提供了生成二维网格坐标的功能,计算平面法线,以及将欧拉角转换为旋转矩阵"""def __init__(self, H_tgt, W_tgt, device=None):if device is None:self.device = torch.device("cpu")else:self.device = deviceself.Height_tgt = H_tgtself.Width_tgt = W_tgtself.meshgrid = self.grid_generation(self.Height_tgt, self.Width_tgt, self.device)  # 生成目标图像的二维网格坐标self.meshgrid = self.meshgrid.permute(2, 0, 1).contiguous()  # 3xHxW   对生成的网格进行维度重排,以匹配 3xHxW 的形状self.n = self.plane_normal_generation(self.device)  # 生成平面法线

其中方法:

def euler_to_rotation_matrix(x_angle, y_angle, z_angle, seq='xyz', degrees=False):"""将欧拉角转换为旋转矩阵Note that here we want to return a rotation matrix rot_mtx, which transform the tgt points into src frame,i.e, rot_mtx * p_tgt = p_srcTherefore we need to add negative to x/y/z_angle  由于在欧拉角中,旋转是绕坐标轴的正方向进行的,而我们希望进行的是相反方向的旋转,因此需要对 x/y/z 分量的欧拉角添加负号,以实现从目标点到源坐标系的变换。注意 **这里的欧拉角需要取反,因为我们希望得到的旋转矩阵是将目标点变换到源坐标系的旋转**  https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html:param roll::param pitch::param yaw::return:"""r = Rotation.from_euler(seq,[-x_angle, -y_angle, -z_angle],degrees=degrees)rot_mtx = r.as_matrix().astype(np.float32)# 用于图像的单应性变换,其中 meshgrid 用于定义原始图像中每个像素的坐标,plane_normal_generation 用于定义平面法线(对于单应性变换而言通常是不必要的,但可能用于其他3D变换),# euler_to_rotation_matrix 则用于根据给定的欧拉角生成对应的旋转矩阵。这些操作都是在准备实施单应性变换或其他相关图像几何变换的数据和参数。return rot_mtx

映射前定义网格

@staticmethoddef grid_generation(H, W, device):""":生成网格坐标,用于后续的映射计算。"""# 使用 numpy 生成x和y方向的线性等分点,并通过 np.meshgrid 生成一个二维网格x = np.linspace(0, W - 1, W)y = np.linspace(0, H - 1, H)xv, yv = np.meshgrid(x, y)  # HxWxv = torch.from_numpy(xv.astype(np.float32)).to(dtype=torch.float32, device=device)yv = torch.from_numpy(yv.astype(np.float32)).to(dtype=torch.float32, device=device)# 生成一个全为1的张量,与x和y坐标一起堆叠(通道维度)成3通道的网格坐标张量ones = torch.ones_like(xv)meshgrid = torch.stack((xv, yv, ones), dim=2)  # HxWx3return meshgrid@staticmethoddef plane_normal_generation(device):"""创建一个表示垂直于xy平面(即z轴方向)的法线向量的张量"""n = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)return n

使用

utils.utils.render_novel_view中:

  1. 计算深度
  2. 计算视点变换
  3. 执行变换
  4. 帧序列到视频
def render_novel_view(mpi_all_rgb_src,mpi_all_sigma_src,disparity_all_src,G_tgt_src,K_src_inv,K_tgt,homography_sampler,
):"""mpi_all_rgb_src,        # 来源视角的RGB图像集合mpi_all_sigma_src,      # 来源视角的不透明度(sigma)集合disparity_all_src,      # 来源视角的视差图集合G_tgt_src,              # 目标视角到来源视角的变换矩阵K_src_inv,              # 来源视角的相机内参矩阵的逆矩阵K_tgt,                  # 目标视角的相机内参矩阵homography_sampler,     # 用于生成和采样单应性(Homographies)的工具"""# 从源视角的视差图计算出每个平面上点的3D坐标xyz_src_BS3HW = mpi_rendering.get_src_xyz_from_plane_disparity(homography_sampler.meshgrid,disparity_all_src,K_src_inv)# 使用源视角的3D坐标和从目标视角到源视角的变换矩阵 G_tgt_src 来计算目标视角的3D坐标xyz_tgt_BS3HW = mpi_rendering.get_tgt_xyz_from_plane_disparity(xyz_src_BS3HW,G_tgt_src)# 调用 render_tgt_rgb_depth 函数,将源视角的RGB图像、不透明度、视差图和3D坐标映射到目标视角,生成合成的目标视角图像 tgt_imgs_syntgt_imgs_syn, _, _ = mpi_rendering.render_tgt_rgb_depth(homography_sampler,mpi_all_rgb_src,mpi_all_sigma_src,disparity_all_src,xyz_tgt_BS3HW,G_tgt_src,K_src_inv,K_tgt,use_alpha=False,is_bg_depth_inf=False,)return tgt_imgs_syn

生成

函数入口

def render_3dphoto(src_imgs,  # [b,3,h,w]mpi_all_src,  # [b,s,4,h,w]disparity_all_src,  # [b,s]k_src,  # [b,3,3]k_tgt,  # [b,3,3]save_path,
):"""src_imgs,          # 输入的源图像,维度为 [batch_size, 3, height, width]mpi_all_src,       # 输入的所有源图像的MPI,维度为 [batch_size, num_planes, 4, height, width]disparity_all_src, # 所有源图像的视差信息,维度为 [batch_size, num_planes]k_src,             # 源相机的内参矩阵,维度为 [batch_size, 3, 3]k_tgt,             # 目标相机的内参矩阵,维度为 [batch_size, 3, 3]save_path,         # 渲染视频的保存路径"""h, w = mpi_all_src.shape[-2:]device = mpi_all_src.devicehomography_sampler = HomographySample(h, w, device)  # 生成单应性变换k_src_inv = torch.inverse(k_src)    # 计算源相机内参矩阵的逆矩阵,用于从像素坐标到相机坐标系的转换。# preprocess the predict MPI# 将视差信息转换为3D空间坐标xyz_src_BS3HW = mpi_rendering.get_src_xyz_from_plane_disparity(     homography_sampler.meshgrid,disparity_all_src,k_src_inv,)# 分离通道mpi_all_rgb_src = mpi_all_src[:, :, 0:3, :, :]  # BxSx3xHxWmpi_all_sigma_src = mpi_all_src[:, :, 3:, :, :]  # BxSx1xHxW# 调用一个渲染函数,用于计算从MPI合成图像时使用的混合权重_, _, blend_weights, _ = mpi_rendering.render(mpi_all_rgb_src,mpi_all_sigma_src,xyz_src_BS3HW,use_alpha=False,is_bg_depth_inf=False,)# 混合权重来更新源图像的MPI RGB部分,这里使用的是alpha blending算法mpi_all_rgb_src = blend_weights * src_imgs.unsqueeze(1) + (1 - blend_weights) * mpi_all_rgb_src# render novel views# 定义通过改变相机外参来模拟相机移动的参数。同时初始化一个空列表用于存储渲染出的帧。swing_path_list = gen_swing_path()frames = []# for cam_ext in tqdm(swing_path_list):# 利用render_novel_view函数来渲染从新视角看到的图像。这个函数需要当前的MPI RGB数据、透明度数据、视差数据、目标相机的外参(这里假设cam_ext是外参# ,cam_ext.cuda()将外参移动到GPU上)、源相机的内参矩阵的逆以及目标相机的内参矩阵。homography_sampler可能用于计算在新视角下图像的单应性变换。for cam_ext in swing_path_list:frame = render_novel_view(mpi_all_rgb_src,mpi_all_sigma_src,disparity_all_src,cam_ext.cuda(), # 目标视角到来源视角的变换矩阵k_src_inv,k_tgt,          #  目标视角的相机内参矩阵homography_sampler,)# 张量转换为NumPy数组,并进行必要的排列以匹配图像的形状要求。然后它将像素值缩放到0-255范围,并转换为uint8类型frame_np = frame[0].permute(1, 2, 0).contiguous().cpu().numpy()  # [b,h,w,3]frame_np = np.clip(np.round(frame_np * 255), a_min=0, a_max=255).astype(np.uint8)frames.append(frame_np)rgb_clip = ImageSequenceClip(frames, fps=30)# moviepy库的ImageSequenceClip类将帧列表转换成视频剪辑,设置每秒帧数为30。然后调用write_videofile方法将视频保存到指定的save_path路径# 使用mpeg4编解码器,不显示详细信息,设置比特率为3000kbps。rgb_clip.write_videofile(save_path, verbose=False, codec='mpeg4', logger=None, bitrate='3000k')

获取移动路径

def gen_swing_path(num_frames=90, r_x=0.14, r_y=0.0, r_z=0.10):"""生成一个摆动路径.生成一系列的4x4变换矩阵,每个矩阵代表了不同时间点的位置num_frames 表示要生成的帧数,默认为90帧;r_x、r_y 在x、y方向上的摆动半径r_z 表示z轴方向上的摆动半径"""# 创建了一个从01等间距的一维张量 t。这个张量表示从摆动开始到结束的时间线索引t = torch.arange(num_frames) / (num_frames - 1)# 创建了一个4x4的单位矩阵(identity matrix),然后将其重复 num_frames 次,用来存储最终生成的每一帧的变换矩阵。poses = torch.eye(4).repeat(num_frames, 1, 1)# 计算了在x轴上的摆动,使用正弦函数来生成x轴的平移部分,摆动的幅度由 r_x 确定# 正余弦: 需要一个物体的运动从最大幅度开始并且回到最大幅度poses[:, 0, 3] = r_x * torch.sin(2. * math.pi * t)poses[:, 1, 3] = r_y * (torch.cos(2. * math.pi * t)  )poses[:, 2, 3] = r_z * (torch.cos(2. * math.pi * t) - 1.0)  # 减去了1,这样摆动的起始点会更低return poses.unbind()   # 张量 poses 拆分成一个元组,元组中的每个元素是一个4x4矩阵,代表了每一帧的变换矩阵

这篇关于【视点合成】代码解读:生成demo视频的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/496413

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是