大数据云计算——Docker环境下部署Hadoop集群及运行集群案列

2023-12-14 10:44

本文主要是介绍大数据云计算——Docker环境下部署Hadoop集群及运行集群案列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大数据云计算——Docker环境下部署Hadoop集群及运行集群案列


本文着重介绍了在Docker环境下部署Hadoop集群以及实际案例中的集群运行。首先,文章详细解释了Hadoop的基本概念和其在大数据处理中的重要性,以及为何选择在Docker环境下部署Hadoop集群。接着,阐述了在Docker中配置和启动Hadoop集群所需的步骤和技术要点。
在展示部署过程中,文章包含了针对Docker容器的Hadoop组件设置,并指导读者如何通过Docker Compose或其他相关工具建立一个多节点的Hadoop集群。特别强调了节点间的通信和配置,确保集群可以有效协同工作。
进一步,本文通过案例描述了在已搭建的Hadoop集群上运行的具体应用场景。案例可能涉及到数据存储、MapReduce任务或其他Hadoop支持的数据处理方式。这些案例旨在展示Hadoop集群在实际大数据处理中的应用和价值。
通过本文,读者可以深入了解如何利用Docker环境快速搭建Hadoop集群,并通过案例展示集群的运行过程,为大数据云计算中的Hadoop应用提供了实用的指导和参考。

首先查看版本环境(docker中没有下载docker和docker-compose的可以看我上一篇博客
Linux 安装配置Docker 和Docker compose 并在docker中部署mysql和中文版portainer图形化管理界面

查看docker和docker-compose版本:

 docker version
docker-compose version

OK,环境没问题,我们正式开始Docker中部署hadoop

<Docker中部署Hadoop>

更新系统

sudo apt update

sudo apt upgrade

国内加速镜像下载修改仓库源

创建或修改 /etc/docker/daemon.json 文件

sudo vi /etc/docker/daemon.json
{"registry-mirrors": [ "http://hub-mirror.c.163.com","https://docker.mirrors.ustc.edu.cn","https://registry.docker-cn.com","https://kfp63jaj.mirror.aliyuncs.com"]
}

重载docker让CDN配置生效

sudo systemctl daemon-reload
sudo systemctl restart docker

抓取ubuntu 20.04的镜像作为基础搭建hadoop环境

sudo docker pull ubuntu:20.04

使用该ubuntu镜像启动,填写具体的path替代

sudo docker run -it -v <host-share-path>:<container-share-path> ubuntu

例如

sudo docker run -it -v ~/hadoop/build:/home/hadoop/build ubuntu

 

容器启动后,会自动进入容器的控制台

在容器的控制台安装所需软件

apt-get update

apt-get upgrade

 安装所需软件

apt-get install net-tools vim openssh-server

 

/etc/init.d/ssh start

让ssh服务器自动启动

vi ~/.bashrc

在文件的最末尾按O进入编辑模式,加上:

/etc/init.d/ssh start

 

按ESC返回命令模式,输入:wq保存并退出。

让修改即刻生效

source ~/.bashrc

配置ssh的无密码访问

ssh-keygen -t rsa

连续按回车

cd ~/.ssh
cat id_rsa.pub >> authorized_keys

进入docker中ubuntu里面的容器

docker start 11f9454b301f
docker exec -it clever_gauss  bash

安装JDK 8

hadoop 3.x目前仅支持jdk 7, 8

apt-get install openjdk-8-jdk

在环境变量中引用jdk,编辑bash命令行配置文件

vi ~/.bashrc

在文件的最末尾加上

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/export PATH=$PATH:$JAVA_HOME/bin

让jdk配置即刻生效

source ~/.bashrc

测试jdk正常运作

java -version

将当前容器保存为镜像

sudo docker commit <CONTAINER ID> <IMAGE NAME> #自己起的镜像名字

 sudo docker commit 11f9454b301f  ubuntu204 #我的是ubuntu204

 可以看到该镜像已经创建成功,下次需要新建容器时可直接使用该镜像

注意!!!此过程的两个相关路径如下(不要搞混了):
<host-share-path>指的是~/hadoop/build
<container-share-path>指的是/home/hadoop/build

下载hadoop,下面以3.2.3为例

https://hadoop.apache.org/releases.html

cd  ~/hadoop/build
wget https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.2.3/hadoop-3.2.3.tar.gz

(这种方法能下载但是会出现下载的包大小不对,我们可以用第二种方法)

方法二:

在自己电脑浏览器输入下载https://dlcdn.apache.org/hadoop/common/hadoop-3.2.3/hadoop-3.2.3.tar.gz

下载到自己电脑上 通过winscp上传到虚拟机中

然后有安装包的目录打开终端, 输入

sudo mv hadoop-3.2.3.tar.gz ~/hadoop/build

移动文件到目录 ~/hadoop/build

在容器控制台上解压hadoop(就是之前创建的容器的控制台,不是自己的控制台!

docker start 11f9454b301f
docker exec -it clever_gauss  bash
cd /home/hadoop/build
tar -zxvf hadoop-3.2.3.tar.gz -C /usr/local

 

安装完成了,查看hadoop版本

cd /usr/local/hadoop-3.2.3
./bin/hadoop version

为hadoop指定jdk位置

vi etc/hadoop/hadoop-env.sh

查找到被注释掉的JAVA_HOME配置位置,更改为刚才设定的jdk位置

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

hadoop联机配置

配置core-site.xml文件

vi etc/hadoop/core-site.xml

加入:

<configuration><property><name>hadoop.tmp.dir</name><value>file:/usr/local/hadoop-3.2.3/tmp</value><description>Abase for other temporary directories.</description></property><property><name>fs.defaultFS</name><value>hdfs://master:9000</value></property>
</configuration>

配置hdfs-site.xml文件

vi etc/hadoop/hdfs-site.xml

加入

<configuration><!--- 配置保存Fsimage位置 --><property><name>dfs.namenode.name.dir</name><value>file:/usr/local/hadoop-3.2.3/namenode_dir</value></property><!--- 配置保存数据文件的位置 --><property><name>dfs.datanode.data.dir</name><value>file:/usr/local/hadoop-3.2.3/datanode_dir</value></property><property><name>dfs.replication</name><value>3</value></property>
</configuration>

MapReduce配置

该配置文件的定义:

https://hadoop.apache.org/docs/r<Hadoop版本号>/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

配置mapred-site.xml文件

vi etc/hadoop/mapred-site.xml

加入: 

<configuration><!--- mapreduce框架的名字 --><property><name>mapreduce.framework.name</name><value>yarn</value></property><! -- 设定HADOOP的位置给yarn和mapreduce程序 --><property><name>yarn.app.mapreduce.am.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property><property><name>mapreduce.map.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property><property><name>mapreduce.reduce.env</name><value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value></property>
</configuration>

配置yarn-site.xml文件

vi etc/hadoop/yarn-site.xml

 加入

<configuration>
<!-- Site specific YARN configuration properties --><!-- 辅助服务,数据混洗 --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.resourcemanager.hostname</name><value>master</value></property>
</configuration>

服务启动权限配置

配置start-dfs.sh与stop-dfs.sh文件

vi sbin/start-dfs.sh 和 vi sbin/stop-dfs.sh
vi sbin/start-dfs.sh
HDFS_DATANODE_USER=rootHADOOP_SECURE_DN_USER=hdfsHDFS_NAMENODE_USER=rootHDFS_SECONDARYNAMENODE_USER=root

继续修改配置文件

vi sbin/stop-dfs.sh
HDFS_DATANODE_USER=rootHADOOP_SECURE_DN_USER=hdfsHDFS_NAMENODE_USER=rootHDFS_SECONDARYNAMENODE_USER=root

配置start-yarn.sh与stop-yarn.sh文件

vi sbin/start-yarn.sh 和 vi sbin/stop-yarn.sh
vi sbin/start-yarn.sh
YARN_RESOURCEMANAGER_USER=rootHADOOP_SECURE_DN_USER=yarnYARN_NODEMANAGER_USER=root

vi sbin/stop-yarn.sh
YARN_RESOURCEMANAGER_USER=rootHADOOP_SECURE_DN_USER=yarnYARN_NODEMANAGER_USER=root

 核心文件一定不能配错,否则后面会出现很多问题!

配置完成,保存镜像

docker ps

docker commit 11f9454b301f ubuntu-myx

保存的镜像名为 ubuntu-myx

 

启动hadoop,并进行网络配置

打开三个宿主控制台,启动一主两从三个容器

master

打开端口映射:8088 => 8088

sudo docker run -p 8088:8088 -it -h master --name master ubuntu-myx

启动节点worker01

sudo docker run -it -h worker01 --name worker01 ubuntu-myx

节点worker02

sudo docker run -it -h worker02 --name worker02 ubuntu-myx

分别打开三个容器的/etc/hosts,将彼此的ip地址与主机名的映射信息补全(三个容器均需要如此配置)

vi /etc/hosts

使用以下命令查询ip

ifconfig

添加信息(每次容器启动该文件都需要调整)

172.17.0.3      master

172.17.0.4      worker01

172.17.0.5      worker02

 

检查配置是否有效

ssh master
ssh worker01
ssh worker02

master 连接worker01节点successfully:

worker01节点连接master 成功:

  worker02连接worker01节点successfully:

在master容器上配置worker容器的主机名

cd /usr/local/hadoop-3.2.3
vi etc/hadoop/workers

删除localhost,加入

worker01

worker02

网络配置完成

启动hadoop

在master主机上

cd /usr/local/hadoop-3.2.3
./bin/hdfs namenode -format

正常启动 

启动服务

./sbin/start-all.sh

效果如下表示正常

在hdfs上建立一个目录存放文件

假设该目录为:/home/hadoop/input

./bin/hdfs dfs -mkdir -p /home/hadoop/input
./bin/hdfs dfs -put ./etc/hadoop/*.xml /home/hadoop/input

查看分发复制是否正常

./bin/hdfs dfs -ls /home/hadoop/input

运行案例:

在hdfs上建立一个目录存放文件

例如

./bin/hdfs dfs -mkdir -p /home/hadoop/wordcount

把文本程序放进去

./bin/hdfs dfs -put hello /home/hadoop/wordcount

查看分发情况

./bin/hdfs dfs -ls /home/hadoop/wordcount

运行MapReduce自带wordcount的示例程序(自带的样例程序运行不出来,可能是虚拟机性能的问题,这里就换成了简单的wordcount程序)

./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.3.jar wordcount /home/hadoop/wordcount /home/hadoop/wordcount/output

 运行成功:

 

运行结束后,查看输出结果

./bin/hdfs dfs -ls /home/hadoop/wordcount/output
./bin/hdfs dfs -cat /home/hadoop/wordcount/output/*

 至此,Docker部署hadoop成功!跟着步骤走一般都没有什么问题。

这篇关于大数据云计算——Docker环境下部署Hadoop集群及运行集群案列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/492214

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在