Ransac 算法的探索和应用

2023-12-14 09:01
文章标签 算法 应用 探索 ransac

本文主要是介绍Ransac 算法的探索和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Ransac 算法python 应用和实现

Ransac 算法是一种常用的图像匹配算法,在参数估计领域也经常被使用到。针对估计各种曲线的鲁棒模型参数,效果显著。这里对ransac算法进行某些探索。

python program:

import numpy as np
import matplotlib.pyplot as plt
import random
import math# 数据量。
SIZE = 60
SIZE_N = 10 # the numbe of noise
# 产生数据。np.linspace 返回一个一维数组,SIZE指定数组长度。
# 数组最小值是0,最大值是10。所有元素间隔相等。
X = np.linspace(0, 10, SIZE)
Y = -2 * X + 5fig = plt.figure()
# 画图区域分成1行1列。选择第一块区域。
ax1 = fig.add_subplot(111)
# 标题
ax1.set_title("title ")# 让散点图的数据更加随机并且添加一些噪声。
random_x = []
random_y = []random_x2 = []
random_y2 = []random_x2b = []
random_y2b = []random_x22 = []
random_y22 = []random_x22b = []
random_y22b = []
# 添加直线随机噪声
for i in range(SIZE):random_x.append(X[i] + random.uniform(-1, 1)) random_y.append(Y[i] + random.uniform(-1, 1)) 
# 添加随机噪声
for i in range(SIZE_N):random_x.append(random.uniform(-SIZE,SIZE))random_y.append(random.uniform(-SIZE,SIZE))
RANDOM_X = np.array(random_x) # 散点图的横轴。
RANDOM_Y = np.array(random_y) # 散点图的纵轴。# 使用RANSAC算法估算模型
# 迭代最大次数,每次得到更好的估计会优化iters的数值
iters = 1000
iters2 = int(iters/2)
# 数据和模型之间可接受的差值
sigma = 3
sigma2 = 10
# 最好模型的参数估计和内点数目
best_a = 0
best_b = 0
best_a2 = 0
best_b2 = 0
pretotal = 0
pretotal2 = 0
# 希望的得到正确模型的概率
P = 0.99for i in range(iters):# update the record position for seconde RANSAC random_x2 = []random_y2 = []# 随机在数据中红选出两个点去求解模型sample_index = random.sample(range(SIZE + SIZE_N),2)x_1 = RANDOM_X[sample_index[0]]x_2 = RANDOM_X[sample_index[1]]y_1 = RANDOM_Y[sample_index[0]]y_2 = RANDOM_Y[sample_index[1]]# y = ax + b 求解出a,ba = (y_2 - y_1) / (x_2 - x_1)b = y_1 - a * x_1# 算出内点数目total_inlier = 0for index in range(SIZE + SIZE_N): # SIZE * 2 is because add 2 times noise of SIZEy_estimate = a * RANDOM_X[index] + bif abs(y_estimate - RANDOM_Y[index]) < sigma:total_inlier = total_inlier + 1# record these points that between +-sigmarandom_x2.append(RANDOM_X[index])random_y2.append(RANDOM_Y[index])# 判断当前的模型是否比之前估算的模型好if total_inlier > pretotal:iters = math.log(1 - P) / math.log(1 - pow(total_inlier / (SIZE + SIZE_N), 2))pretotal = total_inlierbest_a = abest_b = b# update the latest better pointsrandom_x2b = np.array(pretotal) # 散点图的横轴。random_y2b = np.array(pretotal) # 散点图的纵轴。random_x2b = random_x2random_y2b = random_y2SIZE2 = pretotal# 判断是否当前模型已经超过八成的点if total_inlier > 0.8 * SIZE:break# 用我们得到的最佳估计画图
# 横轴名称。
ax1.set_xlabel("top view x-axis")
# 纵轴名称。
ax1.set_ylabel("top view y-axis")Y = best_a * RANDOM_X + best_b# show the ransac2 points:
ax1.scatter(random_x2b, random_y2b, c='b', marker='v')# 直线图
ax1.scatter(RANDOM_X, RANDOM_Y, c='r', marker='^')ax1.plot(RANDOM_X, Y, c='b',)
text = "best_a = " + str(best_a) + "\nbest_b = " + str(best_b)
plt.text(5,50, text,fontdict={'size': 12, 'color': 'b'})# the seconde ransac call the point that cover the largest area
RANDOM_XX = np.array(random_x2b) # 散点图的横轴。
RANDOM_YY = np.array(random_y2b) # 散点图的纵轴。for i in range(iters2):random_x22 = []random_y22 = []# 随机在数据中红选出一个点去求解模型sample_index2 = random.sample(range(SIZE2),1)x_12 = RANDOM_XX[sample_index2[0]]y_12 = RANDOM_YY[sample_index2[0]]# y = ax + b 求解出a,ba2 = -1 / ab2 = y_12 - (a2 * x_12)# 算出内点数目total_inlier2 = 0for index in range(SIZE2):    # SIZE * 2 is because add 2 times noise of SIZEy_estimate2 = a2 * RANDOM_XX[index] + b2if abs(y_estimate2 - RANDOM_YY[index]) < sigma2:total_inlier2 = total_inlier2 + 1# record these points that between +-sigmarandom_x22.append(RANDOM_XX[index])random_y22.append(RANDOM_YY[index])# 判断当前的模型是否比之前估算的模型好if total_inlier2 > pretotal2:print("total_inlier2:", total_inlier2)print("SIZE2:", SIZE2)iters = math.log(1 - P) / math.log(1 - pow(total_inlier2 / SIZE2, 2))pretotal2 = total_inlier2best_a2 = a2best_b2 = b2# update the latest better pointsrandom_x22b = np.array(pretotal2) # 散点图的横轴。random_y22b = np.array(pretotal2) # 散点图的纵轴。random_x22b = random_x22random_y22b = random_y22# 判断是否当前模型已经超过八成的点if total_inlier2 > 0.8 * SIZE2:break# 用我们得到的最佳估计画图
YY = best_a2 * RANDOM_XX + best_b2# show the ransac2 points:
ax1.scatter(random_x22b, random_y22b, c='g', marker='o')ax1.set_aspect('equal', adjustable='box')
# 直线图
ax1.plot(RANDOM_XX, YY, c='g' )
text = "best_a2 = " + str(best_a2) + "\nbest_b2 = " + str(best_b2)
plt.text(1,30, text,fontdict={'size': 12, 'color': 'g'})
plt.show()

ptyhon results:

在这里插入图片描述

References:

ransac实现参考:
scatter()使用方法
Matplotlib 绘制等轴正方形图
random.uniform( ) 函数教程与实例

这篇关于Ransac 算法的探索和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491917

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#