Mapreduce的排序(全局排序、分区加排序、Combiner优化)

2023-12-14 06:18

本文主要是介绍Mapreduce的排序(全局排序、分区加排序、Combiner优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、MR排序的分类

  1.部分排序:MR会根据自己输出记录的KV对数据进行排序,保证输出到每一个文件内存都是经过排序的;

  2.全局排序;

  3.辅助排序:再第一次排序后经过分区再排序一次;

  4.二次排序:经过一次排序后又根据业务逻辑再次进行排序。

 

二、MR排序的接口——WritableComparable

  该接口继承了Hadoop的Writable接口和Java的Comparable接口,实现该接口要重写write、readFields、compareTo三个方法。

 

三、流量统计案例的排序与分区

/*** @author: PrincessHug* @date: 2019/3/24, 15:36* @Blog: https://www.cnblogs.com/HelloBigTable/*/
public class FlowSortBean implements WritableComparable<FlowSortBean> {private long upFlow;private long dwFlow;private long flowSum;public FlowSortBean() {}public FlowSortBean(long upFlow, long dwFlow) {this.upFlow = upFlow;this.dwFlow = dwFlow;this.flowSum = upFlow + dwFlow;}public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDwFlow() {return dwFlow;}public void setDwFlow(long dwFlow) {this.dwFlow = dwFlow;}public long getFlowSum() {return flowSum;}public void setFlowSum(long flowSum) {this.flowSum = flowSum;}@Overridepublic void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(dwFlow);out.writeLong(flowSum);}@Overridepublic void readFields(DataInput in) throws IOException {upFlow = in.readLong();dwFlow = in.readLong();flowSum = in.readLong();}@Overridepublic String toString() {return upFlow + "\t" + dwFlow + "\t" + flowSum;}@Overridepublic int compareTo(FlowSortBean o) {return this.flowSum > o.getFlowSum() ? -1:1;}
}public class FlowSortMapper extends Mapper<LongWritable, Text,FlowSortBean,Text> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//获取数据String line = value.toString();//切分数据String[] fields = line.split("\t");//封装数据long upFlow = Long.parseLong(fields[1]);long dwFlow = Long.parseLong(fields[2]);//传输数据context.write(new FlowSortBean(upFlow,dwFlow),new Text(fields[0]));}
}public class FlowSortReducer extends Reducer<FlowSortBean,Text,Text,FlowSortBean> {@Overrideprotected void reduce(FlowSortBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException {context.write(values.iterator().next(),key);}
}public class FlowSortPartitioner extends Partitioner<FlowSortBean, Text> {@Overridepublic int getPartition(FlowSortBean key, Text value, int i) {String phoneNum = value.toString().substring(0, 3);int partition = 4;if ("135".equals(phoneNum)){return 0;}else if ("137".equals(phoneNum)){return 1;}else if ("138".equals(phoneNum)){return 2;}else if ("139".equals(phoneNum)){return 3;}return partition;}
}public class FlowSortDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {//设置配置,初始化Job类Configuration conf = new Configuration();Job job = Job.getInstance(conf);//设置执行类job.setJarByClass(FlowSortDriver.class);//设置Mapper、Reducer类job.setMapperClass(FlowSortMapper.class);job.setReducerClass(FlowSortReducer.class);//设置Mapper输出数据类型job.setMapOutputKeyClass(FlowSortBean.class);job.setMapOutputValueClass(Text.class);//设置Reducer输出数据类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowSortBean.class);//设置自定义分区job.setPartitionerClass(FlowSortPartitioner.class);job.setNumReduceTasks(5);//设置文件输入输出类型FileInputFormat.setInputPaths(job,new Path("G:\\mapreduce\\flow\\flowsort\\in"));FileOutputFormat.setOutputPath(job,new Path("G:\\mapreduce\\flow\\flowsort\\partitionout"));//提交任务if (job.waitForCompletion(true)){System.out.println("运行完成!");}else {System.out.println("运行失败!");}}
}

  注意:再写Mapper类的时候,要注意KV对输出的数据类型,Key的类型一定要为FlowSortBean,因为在Mapper和Reducer之间进行的排序(只是排序)是通过Mapper输出的Key来进行排序的,而分区可以指定是通过Key或者Value。

 

四、Combiner合并

  Combiner是在MR之外的一个组件,可以用来在maptask输出到环形缓冲区溢写之后,分区排序完成时进行局部的汇总,可以减少网络传输量,进而优化MR程序。

  Combiner是用在当数据量到达一定规模之后的,小的数据量并不是很明显。

  例如WordCount程序,当单词文件的大小到达一定程度,可以使用自定义Combiner进行优化:

public class WordCountCombiner extends Reducer<Text,IntWritable,Text,IntWritable>{protected void reduce(Text key,Iterable<IntWritable> values,Context context){//计数int count = 0;//累加求和for(IntWritable v:values){count += v.get();}//输出context.write(key,new IntWritable(count));}
}

  然后再Driver类中设置使用Combiner类

job.setCombinerClass(WordCountCombiner.class);

  如果仔细观察,WordCount的自定义Combiner类与Reducer类是完全相同的,因为他们的逻辑是相同的,即在maptask之后的分区内先进行一次累加求和,然后到reducer后再进行总的累加求和,所以在设置Combiner时也可以这样:

job.setCombinerClass(WordCountReducer.class);

 

  注意:Combiner的应用一定要注意不能影响最终业务逻辑的情况下使用,比如在求平均值的时候:

  mapper输出两个分区:3,5,7  =>avg=5

            2,6    =>avg=4

  reducer合并输出:  5,4     =>avg=4.5  但是实际应该为4.6,错误!

  所以在使用Combiner时要注意其不会影响最中的结果!!!

 

转载于:https://www.cnblogs.com/HelloBigTable/p/10591267.html

这篇关于Mapreduce的排序(全局排序、分区加排序、Combiner优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/491430

相关文章

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

kafka自定义分区器使用详解

《kafka自定义分区器使用详解》本文介绍了如何根据企业需求自定义Kafka分区器,只需实现Partitioner接口并重写partition()方法,示例中,包含cuihaida的数据发送到0号分区... 目录kafka自定义分区器假设现在有一个需求使用分区器的方法总结kafka自定义分区器根据企业需求

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

Java Map排序如何按照值按照键排序

《JavaMap排序如何按照值按照键排序》该文章主要介绍Java中三种Map(HashMap、LinkedHashMap、TreeMap)的默认排序行为及实现按键排序和按值排序的方法,每种方法结合实... 目录一、先理清 3 种 Map 的默认排序行为二、按「键」排序的实现方式1. 方式 1:用 TreeM

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变