对于IEEE754移码取值问题的一点臆测

2023-12-13 22:40

本文主要是介绍对于IEEE754移码取值问题的一点臆测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

  昨晚,科协的群里提到了移码,相对陌生的词汇,我从未见过,后来搜索了下资料,发现了IEEE754中采用的是127(32bit),很是疑惑,一般不都是128吗?

  经过计算发现了一个现象,只能说这个相当巧妙!

—————————————————————————————————————————————————————

1.   首先IEEE754  为何定义规格化、非规格化、无穷大、NaN  

    注:以下均以32位浮点数为例   

        A.  规格化:阶数(exp)不为0和255  

        B.  非规格化:exp=0  

        C.  无穷大:exp=255,尾数(frac)=0   

        D.  NaN:exp=255,frac!=0   

2.   什么是移码?   

    移码就是符号位取反的补码   

      例如:   

        补码:10000001 (-127=-128+1)   

        移码:00000001 (补码+最高位的原码数值128)   

        当然上例是最最普通的例子。   

        我们因此而得到的效果为: 

                            00000000=-128  

                            00000001=-127  

                                。。。。。。   

                            11111111=127(01111111(127)+10000000(128))   

    相对于原来的二进制表示而言,这里更加容易比较大小,这个很明显。   

    但是   

    为什么IEEE754不是加128,而是127?   

        最精辟的就是这里了,这个和我们1中讲述的4中状态有关   

            首先,我们先来按照上面的来计算一边   

                  -128+127=11111111=-128(10000000+01111111)   

                  -127+127=00000000=-127 

                            。。。。。。   

                    127+127=11111110=127  

  先来看11111111,按照128的算法,这个值应该是最大的,但是这里确实最小的,好吧,IEEE754  的目的达到了,这个值绝对不可取,因此,作为两个特殊状态,至于另外的00000000,原则上说这个值是合法的,但是这里令它表示非规格化,至于为什么,你们得问IEEE 组织了,但是好歹他也被赋予了合法的地位(笑),我们的确需要非规格化数,也只有它的形式最特殊了。 

———————————————————————————————————————————————————————

不知道对不对,希望大家斧正^_^

转载于:https://my.oschina.net/codesun/blog/79673

这篇关于对于IEEE754移码取值问题的一点臆测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/490208

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2