浅析特征增强个性化在CTR预估中的经典方法和效果对比

2023-12-13 17:04

本文主要是介绍浅析特征增强个性化在CTR预估中的经典方法和效果对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在CTR预估中,主流都采用特征embedding+MLP的方式,其中特征非常关键。然而对于相同的特征,在不同的样本中,表征是相同的,这种方式输入到下游模型,会限制模型的表达能力。为了解决这个问题,CTR预估领域提出了一系列相关工作,被称为特征增强模块。特征增强模块根据不同的样本,对embedding层的输出结果进行一次矫正,以适应不同样本的特征表示,提升模型的表达能力。最近,复旦大学和微软亚研院联合发布了一篇特征增强工作的总结,对比了不同特征增强模块实现方法的效果。本文给大家介绍一下几种特征增强模块的实现方法,以及本文进行的相关对比实验。

论文标题:A Comprehensive Summarization and Evaluation of Feature Refinement Modules for CTR Prediction

下载地址:https://arxiv.org/pdf/2311.04625v1.pdf

1.热症增强建模思路

特征增强模块,旨在提升CTR预估模型中Embedding层的表达能力,实现相同特征在不同样本下的表征差异化。特征增强模块可以用下面这个统一公式表达,输入原始的Embedding,经过一个函数后,生成这个样本个性化的Embedding。

这类方法的大致思路为,在得到初始的每个特征的embedding后,使用样本本身的表征,对特征embedding做一个变换,得到当前样本的个性化embedding。下面给大家介绍一些经典的特征增强模块建模方法。

 2.特征增强经典方法

An Input-aware Factorization Machine for Sparse Prediction(IJCAI 2019)这篇文章在embedding层之后增加了一个reweight层,将样本初始embedding输入到一个MLP中得到一个表征样本的向量,使用softmax进行归一化。Softmax后的每个元素对应一个特征,代表这个特征的重要程度,使用这个softmax结果和每个对应特征的初始embedding相乘,实现样本粒度的特征embedding加权。

FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction(RecSys 2019)也是类似的思路,为每个样本学习一个特征的个性化权重。整个过程分为squeeze、extraction、reweight三个步骤。在squeeze中,将每个特征embedding通过pooling得到一个其对应的统计标量。在extraction中,将这些标量输入到MLP中,得到每个特征的权重。最后,使用这个权重和每个特征embedding向量相乘,得到加权后的embedding结果,相当于在样本粒度做一个特征重要性筛选。

A Dual Input-aware Factorization Machine for CTR Prediction(IJCAI 2020)和上一篇文章类似,也是利用self-attention对特征进行一层增强。整体分为vector-wise和bit-wise两个模块。Vector-wise将每个特征的embedding当成序列中的一个元素,输入到Transformer中得到融合后的特征表示;bit-wise部分使用多层MLP对原始特征进行映射。两部分的输入结果相加后,得到每个特征元素的权重,乘到对应的原始特征的每一位上,得到增强后的特征。

GateNet: Gating-Enhanced Deep Network for Click-Through Rate Prediction(2020)利用每个特征的初始embedding过一个MLP和sigmoid函数生成其独立的特征权重分,同时也使用MLP对所有特征进行映射生成bit-wise的权重分,两者融合对输入特征进行加权。除了特征层外,在MLP的隐层,也利用类似的方法,对每个隐层的输入进行加权。

Interpretable Click-Through Rate Prediction through Hierarchical Attention(WSDM 2020)也是利用self-attention实现特征的转换,但是增加了高阶特征的生成。这里面使用层次self-attention,每一层的self-attention以上一层sefl-attention的输出作为输入,每一层增加了一阶高阶特征组合,实现层次多阶特征提取。具体来说,每一层进行self-attention后,将生成的新特征矩阵经过softmax得到每个特征的权重,根据权重对原始特征加权新的特征,再和原始特征进行一次点积,实现增加一阶的特征交叉。

ContextNet: A Click-Through Rate Prediction Framework Using Contextual information to Refine Feature Embedding(2021)也是类似的做法,使用一个MLP将所有特征映射成一个每个特征embedding尺寸的维度,对原始特征做一个缩放,文中针对每个特征使用了个性化的MLP参数。通过这种方式,利用样本中的其他特征作为上下位增强每个特征。

Enhancing CTR Prediction with Context-Aware Feature Representation Learning(SIGIR 2022)采用了self-attention进行特征增强,对于一组输入特征,每个特征对于其他特征的影响程度是不同的,通过self-attention,对每个特征的embedding进行一次self-attention,实现样本内特征间的信息交互。除了特征间的交互,文中也利用MLP进行bit级别的信息交互。上述生成的新embedding,会通过一个gate网络,和原始的embedding进行融合,得到最终refine后的特征表示。

3.实验效果

文中进行了各类特征增强方法的效果对比,整体结论为,在众多特征增强模块中,GFRL、FRNet-V、FRNetB 表现的最好,并且效果要优于其他的特征增强方法。

这篇关于浅析特征增强个性化在CTR预估中的经典方法和效果对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489229

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

防近视护眼台灯什么牌子好?五款防近视效果好的护眼台灯推荐

在家里,灯具是属于离不开的家具,每个大大小小的地方都需要的照亮,所以一盏好灯是必不可少的,每个发挥着作用。而护眼台灯就起了一个保护眼睛,预防近视的作用。可以保护我们在学习,阅读的时候提供一个合适的光线环境,保护我们的眼睛。防近视护眼台灯什么牌子好?那我们怎么选择一个优秀的护眼台灯也是很重要,才能起到最大的护眼效果。下面五款防近视效果好的护眼台灯推荐: 一:六个推荐防近视效果好的护眼台灯的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口