python for CFD 第三步(Burgers方程)

2023-12-13 16:10

本文主要是介绍python for CFD 第三步(Burgers方程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2019独角兽企业重金招聘Python工程师标准>>> hot3.png


Burgers方程形式

110737_TPAk_1427937.png

差分离散格式(forward difference for time, backward difference for space  2nd-order method for the second derivatives )

110902_DYim_1427937.png

这里设置了周期性初始条件

111313_mFbX_1427937.png

#!/usr/bin/python
# -*-coding:utf-8 -*- 
import numpy as np
import sympy
from sympy import init_printing
init_printing(use_latex=True)  #在ipython中直接打印公式使用latex格式
from sympy.utilities.lambdify import lambdify
import matplotlib.pylab as pltx,nu,t = sympy.symbols("x,nu,t")
phi = sympy.exp(-(x-4*t)**2/(4*nu*(t+1))) + sympy.exp(-(x-4*t-2*np.pi)**2/(4*nu*(t+1)))
phiprime = phi.diff(x)
u = -2*nu*(phiprime/phi)+4
ufunc = lambdify((t,x,nu),u)nx = 101
nt=100
dx = 2*np.pi/(nx-1)
nu=0.07
dt=dx*nux= np.linspace(0,2*np.pi,nx)
un = np.empty(nx)
t=0
u=np.asarray([ufunc(t,x0,nu) for x0 in x]) #list 转化成 np.arrayplt.figure(figsize=(4,4),dpi=100)
plt.plot(x,u,lw=2)
plt.xlim([0,2*np.pi])
plt.ylim([0,8])for n in range(nt):un = u.copy()for i in range(nx-1):u[i] = un[i] - un[i] * dt/dx *(un[i] - un[i-1]) + nu*dt/dx**2*(un[i+1]-2*un[i]+un[i-1])u[-1] = un[-1] - un[-1] * dt/dx * (un[-1] - un[-2]) + nu*dt/dx**2*(un[0]-2*un[-1]+un[-2])u_analytical = np.asarray([ufunc(nt*dt,xi,nu) for xi in x])plt.figure(figsize=(6,6),dpi=100)
plt.plot(x,u,marker="o",color="blue",lw=2,label='Computational')		
plt.plot(x,u_analytical,color="yellow",label='analytical')
plt.xlim([0,2*np.pi])
plt.ylim([0,10])
plt.legend()
plt.show()
结果第一张图是初始图像,第二张是解析解和计算解比较图

111603_Rky1_1427937.png

111603_BF6A_1427937.png

转载于:https://my.oschina.net/sunxichao/blog/377194

这篇关于python for CFD 第三步(Burgers方程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/489084

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目