SimCLR损失函数详解

2023-12-13 11:52
文章标签 函数 详解 损失 simclr

本文主要是介绍SimCLR损失函数详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片来源:Self-Supervised Learning 超详细解读 (二):SimCLR系列

文章目录

  • 1. 数据增强
  • 2. 获得图片表征
  • 3. 正样本和负样本构建
  • 4. 计算相似度
  • 5. 计算图片之间相似的概率
  • 6. 损失函数
  • 为什么需要大规模的batchsize?

1. 数据增强

有一批batchsize为N的样本,论文中N=8192,下图以N=2为例;

对一个batch中的每个样本都进行2次随机的数据增强(随机裁剪之后再resize成原来的大小、随机色彩失真、随机高斯模糊3种方式)

对每张图片 x i x_i xi得到2个不同的数据增强结果( x i 1 和 x i 2 x_i^1和x_i^2 xi1xi2),所以1个Batch 一共有 N*2 个增强样本图片。

在这里插入图片描述

2. 获得图片表征

经过resnet网络提取特征+预测头,提取到了最终的visual representation。
在这里插入图片描述

3. 正样本和负样本构建

对于一个batch中,由同一张图片数据增强过的两张图片( x i 1 和 x i 2 x_i^1和x_i^2 xi1xi2)组成一个positive pair,他们互为正样本
其余任意两两图片之间的组合组成的图片对即为负样本。即N组pair中有一对positiveN-1对negative样本。

在这里插入图片描述

4. 计算相似度

使用余弦相似度衡量两两向量之间的相似度,公式如下所示:
在这里插入图片描述

5. 计算图片之间相似的概率

使用softmax计算概率:

在这里插入图片描述

该计算表达的 x i 1 x_i^1 xi1 x i 2 x_i^2 xi2最相似的概率,即第一张图片作为参考,计算另外三张图片,哪个最像

分子为 x i 1 x_i^1 xi1 x i 2 x_i^2 xi2的相似性取对数,分母为 x i 1 x_i^1 xi1与一个batch中另外 2 N − 1 2N-1 2N1张图片的相似性求对数的和。故分子为1对的相似性,分母为2N-1对图片的相似性的和

6. 损失函数

我们希望上面的softmax的结果尽量大(同一张图片增强出来的两张图片互为正样本,相似度越大越好),所以损失函数取了softmax的负对数:
在这里插入图片描述
接下来再计算是 x i 2 x_i^2 xi2 x i 1 x_i^1 xi1最相似的概率然后取-log, 即对第一对的计算交换顺序再计算一遍;

在这里插入图片描述
最后,计算每个Batch里面的所有Pair(共有N个图片对,2N个交换顺序之后的pair) 的损失之和取平均:

在这里插入图片描述

为什么需要大规模的batchsize?

更大的训练批量和训练轮数,可以提供更多的负样本,促进模型收敛。

可以增加负样本的数量,在计算概率的时候,计算公式的分母中就包含了负样本的计算
在这里插入图片描述

这篇关于SimCLR损失函数详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/488370

相关文章

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要