python实现形态学建筑物指数MBI提取建筑物及数据获取

2023-12-13 09:28

本文主要是介绍python实现形态学建筑物指数MBI提取建筑物及数据获取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

    形态学建筑物指数MBI通过建立建筑物的隐式特征和形态学算子之间的关系进行建筑物的提取[1]。

原理

图片

上图源自[2]。

实验数据

简单找了一张小图片:

图片

test.jpg

代码

为了支持遥感图像,读写数据函数都是利用GDAL写的。

import numpy as np
import gdal#  读取tif数据集
def readTif(fileName, xoff = 0, yoff = 0, data_width = 0, data_height = 0):dataset = gdal.Open(fileName)if dataset == None:print(fileName + "文件无法打开")#  栅格矩阵的列数width = dataset.RasterXSize #  栅格矩阵的行数height = dataset.RasterYSize #  波段数bands = dataset.RasterCount #  获取数据if(data_width == 0 and data_height == 0):data_width = widthdata_height = heightdata = dataset.ReadAsArray(xoff, yoff, data_width, data_height)#  获取仿射矩阵信息geotrans = dataset.GetGeoTransform()#  获取投影信息proj = dataset.GetProjection()return width, height, bands, data, geotrans, proj#  保存tif文件函数
def writeTiff(im_data, im_geotrans, im_proj, path):if 'int8' in im_data.dtype.name:datatype = gdal.GDT_Byteelif 'int16' in im_data.dtype.name:datatype = gdal.GDT_UInt16else:datatype = gdal.GDT_Float32if len(im_data.shape) == 3:im_bands, im_height, im_width = im_data.shapeelif len(im_data.shape) == 2:im_data = np.array([im_data])im_bands, im_height, im_width = im_data.shape#创建文件driver = gdal.GetDriverByName("GTiff")dataset = driver.Create(path, int(im_width), int(im_height), int(im_bands), datatype)if(dataset!= None):dataset.SetGeoTransform(im_geotrans) #写入仿射变换参数dataset.SetProjection(im_proj) #写入投影for i in range(im_bands):dataset.GetRasterBand(i+1).WriteArray(im_data[i])del dataset

接下来就是就算MBI,代码注释很详细,也可以对着原理来看。

from skimage.morphology import square, white_tophat
from skimage.transform import rotate#  计算MBI
#  s_min: 结构元素大小最小值
#  s_max: 结构元素大小最大值
#  delta_s: 颗粒测定的间隔
def CalculationMBI(filePath, MBIPath, s_min, s_max, delta_s):#  读取图像的相关信息width, height, bands, image, geotrans, proj = readTif(filePath)#  多光谱带的最大值对应于具有高反射率的特征->取光谱带最大值作为后续计算数据gray = np.max(image, 0)#  为消除白帽边缘效应,进行边缘补零gray = np.pad(gray, ((s_min, s_min), (s_min, s_min)), 'constant', constant_values=(0, 0))#  形态学剖面集合MP_MBI_list = []#  差分形态学剖面DMP集合DMP_MBI_list = []#  计算形态学剖面for i in range(s_min, s_max + 1, 2 * delta_s):print("s = ", i)#  大小为i×i的单位矩阵SE_intermediate = square(i)#  只保留中间一行为1,其他设置为0SE_intermediate[ : int((i - 1) / 2), :] = 0SE_intermediate[int(((i - 1) / 2) + 1) : , :] = 0#  SE_intermediate表示结构元素,用于设定局部区域的形状和大小#  旋转0 45 90 135°for angle in range(0, 180, 45):SE_intermediate = rotate(SE_intermediate, angle, order = 0, preserve_range = True).astype('uint8')#  多角度形态学白帽重构MP_MBI = white_tophat(gray, selem = SE_intermediate)MP_MBI_list.append(MP_MBI)#  计算差分形态学剖面DMPfor j in range(4, len(MP_MBI_list), 1):#  差的绝对值DMP_MBI = np.absolute(MP_MBI_list[j] - MP_MBI_list[j - 4])DMP_MBI_list.append(DMP_MBI)#  计算MBIMBI = np.sum(DMP_MBI_list, axis = 0) / (4 * (((s_max - s_min) / delta_s) + 1))#  去除多余边缘结果MBI = MBI[s_min : MBI.shape[0] - s_min, s_min : MBI.shape[1] - s_min]#  写入文件writeTiff(MBI, geotrans, proj, MBIPath)#  原图像
filePath = r"test.jpg"
#  MBI结果
MBIPath = r"test_mbi.jpg"
#  建筑物提取结果
buildingPath = r"test_building.jpg"
#  结构元素大小最小值
s_min = 3
#  结构元素大小最大值
s_max = 20
#  测定的间隔
delta_s = 1
#  计算MBI
CalculationMBI(filePath, MBIPath, s_min, s_max, delta_s)

图片

test_mbi.jpg

MBI计算出来了以后,我们就要取阈值来提取建筑物了,阈值可以手动设置,也可以用算法自动求出阈值,这里我们采用OTSU算法[3]。

from skimage.filters import threshold_otsudef BuildingExtraction_otsu(MBIPath, buildingPath):width, height, bands, image, geotrans, proj = readTif(MBIPath)thresh = threshold_otsu(image) #返回一个阈值image[image>thresh] = 255image[image<=thresh] = 0image = image.astype(np.uint8)writeTiff(image, geotrans, proj, buildingPath)#  otsu自动计算阈值提取建筑物
BuildingExtraction_otsu(MBIPath, buildingPath)

图片

test_building.jpg

目视对照一下的话,感觉效果还不错。

参考

  1. ^Huang X and Zhang L. 2011. A multidirectional and multiscale morphological index for automatic building extraction from multispectral geoeye-1 imagery. Photogrammetric Engineering and Remote Sensing, 77(7), 721-732. [DOI: 10.14358/PERS.77.7.721]

  2. ^魏旭,高小明,岳庆兴,郭正胜.一种结合MBI和SLIC算法的遥感影像建筑物提取方法[J].测绘与空间地理信息,2019,42(10):100-103.

  3. ^otsu(大津算法)-百度百科 https://baike.baidu.com/item/otsu/16252828?fr=aladdin

来源:应用推广部

供稿:技术研发部

编辑:方梅

这篇关于python实现形态学建筑物指数MBI提取建筑物及数据获取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/487928

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意