梯形速度规划算法原理及代码

2023-12-13 02:12

本文主要是介绍梯形速度规划算法原理及代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

梯形速度规划的原理:梯形速度规划算法
对应的代码如下:

#pragma once
#include <cmath>
#include <iostream>
#include <vector>
struct SpeedPoint {SpeedPoint() {s = 0;speed = 0;t = 0;}double s;      // mdouble speed;  // m/sdouble t;      // s
};inline std::tuple<double, double, double> trapezoidalSpeedPlanningGetS(const double& max_speed, const double& init_speed,const double& aim_distance, const double& aim_speed,const double& aim_acc) {// 分类讨论,初始车速&最高速度的大小double valid_aim_speed = aim_speed;if (aim_speed > max_speed) {valid_aim_speed = max_speed;}double s1 =(std::pow(max_speed, 2) - std::pow(init_speed, 2)) / (2 * aim_acc);double s3 =(std::pow(max_speed, 2) - std::pow(valid_aim_speed, 2)) / (2 * aim_acc);double s2 = aim_distance - fabs(s1) - s3;if (s2 < 0) {s2 = 0;s1 = (2 * aim_acc * aim_distance - std::pow(init_speed, 2) +std::pow(valid_aim_speed, 2)) /(4 * aim_acc);if (fabs(s1) > aim_distance) {s1 = std::copysign(aim_distance, s1);s2 = s3 = 0;} elses3 = aim_distance - fabs(s1);}return std::tuple<double, double, double>(s1, s2, s3);
}/*** @brief trapezoidalSpeedPlanning: 梯形速度规划* @param max_speed* @param init_speed* @param aim_distance* @param aim_speed* @param aim_acc* s1: 加速段* s2: 匀速段* s3: 减速段* @return*/
inline std::vector<SpeedPoint> trapezoidalSpeedPlanning(const double& max_speed, const double& init_speed,const double& aim_distance, const double& aim_speed,const double& aim_acc) {std::vector<SpeedPoint> results;if (max_speed <= 0) {// to zero.return results;}double s1, s2, sk, s3;std::tuple<double, double, double> result_ss = trapezoidalSpeedPlanningGetS(max_speed, init_speed, aim_distance, aim_speed, aim_acc);s1 = std::get<0>(result_ss);s2 = std::get<1>(result_ss);s3 = std::get<2>(result_ss);sk = fabs(s1) + s2;const double delta_t = 0.1;double acculate_s = 0;double acculate_v = init_speed;double acculate_t = 0;SpeedPoint speed_point;double s1_sign = std::copysign(1, s1);double speed_m = std::sqrt(2 * aim_acc * s1 + init_speed * init_speed);for (; acculate_s < aim_distance;) {speed_point.s = acculate_s;speed_point.t = acculate_t;speed_point.speed = acculate_v;acculate_t += delta_t;results.push_back(speed_point);if (acculate_s <= fabs(s1)) {acculate_s += acculate_v * delta_t;acculate_v += aim_acc * delta_t * s1_sign;} else if (acculate_s < sk) {acculate_s += acculate_v * delta_t;} else {// 减速段acculate_s += acculate_v * delta_t;acculate_v -= aim_acc * delta_t;if (acculate_v <= 0) break;}}return results;
}inline double trapezoidalSpeedPlanningTime(const double& max_speed,const double& init_speed,const double& aim_distance,const double& aim_speed,const double& aim_acc) {if (max_speed <= 0) {// to zero.return INFINITY;}double s1, s2, s3;std::tuple<double, double, double> result_ss = trapezoidalSpeedPlanningGetS(max_speed, init_speed, aim_distance, aim_speed, aim_acc);double valid_aim_speed = aim_speed;if (aim_speed > max_speed) {valid_aim_speed = max_speed;}s1 = std::get<0>(result_ss);s2 = std::get<1>(result_ss);s3 = std::get<2>(result_ss);//  std::cout << "s1: " << s1 << ", s2: " << s2 << ", s3: " << s3 <<//  std::endl;double speed_m = std::sqrt(2 * aim_acc * s1 + init_speed * init_speed);double speed_final = std::sqrt(speed_m * speed_m + 0.2 - 2 * aim_acc * s3);if (fabs(speed_final - valid_aim_speed) > 1) return INFINITY;double time_1 = fabs(speed_m - init_speed) / aim_acc, time_2 = s2 / speed_m,time_3 = (speed_m - speed_final) / aim_acc;return time_1 + time_2 + time_3;
}
inline double GetSpeedPlanningTimeByReultS(const std::tuple<double, double, double>& result_ss,const double& max_speed, const double& init_speed,const double& aim_distance, const double& aim_speed,const double& aim_acc) {if (max_speed <= 0) {// to zero.return INFINITY;}double s1, s2, s3;double valid_aim_speed = aim_speed;if (aim_speed > max_speed) {valid_aim_speed = max_speed;}s1 = std::get<0>(result_ss);s2 = std::get<1>(result_ss);s3 = std::get<2>(result_ss);//  std::cout << "s1: " << s1 << ", s2: " << s2 << ", s3: " << s3 <<//  std::endl;double speed_m = std::sqrt(2 * aim_acc * s1 + init_speed * init_speed);double speed_final = std::sqrt(speed_m * speed_m + 0.2 - 2 * aim_acc * s3);if (fabs(speed_final - valid_aim_speed) > 1) return INFINITY;double time_1 = fabs(speed_m - init_speed) / aim_acc, time_2 = s2 / speed_m,time_3 = (speed_m - speed_final) / aim_acc;return time_1 + time_2 + time_3;
}inline SpeedPoint trapezoidalSpeedPlanningPointByS(const double& s1, const double& s2, const double& s3, const double& s,const double& init_speed, const double& aim_acc) {SpeedPoint speed_point;double speed_m = std::sqrt(2 * aim_acc * s1 + init_speed * init_speed);speed_point.s = s;double s1_sign = std::copysign(1, s1);if (s <= fabs(s1)) {double vt = sqrt(2 * aim_acc * s1_sign * s + init_speed * init_speed);speed_point.speed = vt;speed_point.t = (vt - init_speed) / (aim_acc * s1_sign);} else if (s < fabs(s1) + s2) {double v1_t = speed_m;speed_point.speed = v1_t;// s1_t + (s - fabs(s1)) / v1_t;speed_point.t =(v1_t - init_speed) / (aim_acc * s1_sign) + (s - fabs(s1)) / v1_t;} else {// 减速段double v1_t = speed_m;double t1 = fabs(speed_m - init_speed) / aim_acc;double t2 = s2 / v1_t;double end_speed_2 = v1_t * v1_t - 2 * aim_acc * (s - s2 - fabs(s1));if (end_speed_2 < 1e-2)speed_point.speed = 0;elsespeed_point.speed = sqrt(end_speed_2);speed_point.t = t1 + t2 + (v1_t - speed_point.speed) / aim_acc;}return speed_point;
}

这篇关于梯形速度规划算法原理及代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/486792

相关文章

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P