目标检测锚框

2023-12-12 21:28
文章标签 目标 检测 锚框

本文主要是介绍目标检测锚框,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标检测锚框

最开始呢,我们需要先介绍一下框,先学会一下怎么画框
导入所需要的包

from PIL import Image
import d2lzh_pytorch as d2l
import numpy as np
import math
import torch

展示一下本次实验我们用到的图像,猫狗

d2l.set_figsize()
img = Image.open("catdog.png")
d2l.plt.imshow(img);

在这里插入图片描述
之后我们就可以在图中画框了,我们需要知道的是框的左上角和右下角坐标,注意,图像的左上角是原点。
知道了框左上角和右下角坐标,定义一个函数来画框

#使用边界框boundding box来描述目标位置,由矩形左上角坐标和右下角坐标
dog_bbox, cat_bbox = [20,15,137,516], [133, 43, 222, 158]  # 随便设的
# 画出来
def bbox_to_rect(bbox, color):return d2l.plt.Rectangle(xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],fill=False, edgecolor = color, linewidth=2)
fig = d2l.plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'))

在这里插入图片描述
以上就是框的基本概念,应该还是很简单的,接下来我们需要知道什么是锚框

假设输入图像高为h,宽为w,我们分别以每个像素为中心生成不同形状的锚框,设锚框的大小为s,宽高比为r>0,锚框的宽和高为 w s r ws\sqrt{r} wsr , h s 1 r hs\frac{1}{\sqrt{r}} hsr 1
下面我们假设分别设定好了一组 s 1 , s 2 , … , s n s_1,s_2,\dots,s_n s1,s2,,sn r 1 , r 2 … , r m r_1,r_2\dots,r_m r1,r2,rm,如果以每个像素为中心都使用所有大小和宽高比的组合,一共会得到whmn个锚框,计算复杂度有点高,因此,我们通常只考虑对包含 s 1 s_1 s1 r 1 r_1 r1的大小和宽高比组合感兴趣,即
( s 1 , r 1 ) , ( s 1 , r 2 ) , ⋯ , ( s 1 , r m ) , ( s 2 , r 1 ) , ⋯ , ( s n , r 1 ) (s_1,r_1),(s_1,r_2),\cdots,(s_1,r_m),(s_2,r_1),\cdots,(s_n,r_1) (s1,r1),(s1,r2),,(s1,rm),(s2,r1),,(sn,r1)
这样的话,对于每个像素点,我们就有n+m-1个锚框,总体整个图像有wh(n+m-1)个锚框
以下代码可以生成以上说的锚框

# 本函数已经保存在d2lzh_pytorch包中方便使用
d2l.set_figsize()
img = Image.open("catdog.png")
w, h = img.size 
def MultiBoxPrior(feature_map, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5]):# pairs 为刚刚说的组合,r记得开个根号pairs = []for r in ratios:pairs.append([sizes[0], math.sqrt(r)])for s in sizes:pairs.append([s, math.sqrt(ratios[0])])pairs = np.array(pairs)ss1 = pairs[:, 0] * pairs[:, 1] # size * sqrt(r) 刚刚说的宽ss2 = pairs[:, 0] / pairs[:, 1] # size / sqrt(r) 高base_anchors = np.stack([-ss1, -ss2, ss1, ss2], axis=1)/2  # 按列拼接,xmin, ymin, xmax, ymaxh, w = feature_map.shape[-2:]# 遍历每个像素点shifts_x = np.arange(0, w)/w # 除以是为了归一化,后面会还原的shifts_y = np.arange(0, h)/hshift_x,shift_y = np.meshgrid(shifts_x, shifts_y)shift_x = shift_x.reshape(-1)shift_y = shift_y.reshape(-1)shifts = np.stack((shift_x, shift_y, shift_x, shift_y), axis = 1) # 前两列用来定位左上角,后两列定位右下角 ps:误会了,y轴是从上往下的anchors = shifts.reshape((-1, 1, 4)) + base_anchors.reshape((1, -1, 4)) # shifts.shape是w*h,4  base_anchors为(n+m),4  没有-1是因为没剔除,重复了也无所谓没事# 将shift变成 w*h,1,4  base_anchors变为1*6*4 这样他们相加,根据Python的广播机制,size会变为w*h*6*4,w*h表示每个像素点,6代表锚框的个数,# 4则分别代表每个框的左下角的xy 和右上角的xyreturn torch.tensor(anchors, dtype=torch.float32).view(1, -1, 4)
X = torch.Tensor(1, 3, h, w)  # 构造输入数据
Y = MultiBoxPrior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape # torch.Size([1, 401376, 4])  
# Y.shape 为(1, 锚框个数,4)

然后我们写一个绘制以某像素为中心的他的锚框函数

# 为了描绘图像以某个像素为中心的所有锚框,定义一个函数
def show_bboxes(axes, bboxes, labels=None, colors=None):def _make_list(obj, default_values=None):if obj is None:obj = default_valueselif not isinstance(obj, (list, tuple)):obj = [obj]return objlabels = _make_list(labels)colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])for i, bbox in enumerate(bboxes):color = colors[i % len(colors)]rect = d2l.bbox_to_rect(bbox.detach().cpu().numpy(), color)axes.add_patch(rect)if labels and len(labels) > i:text_color = 'k' if color == 'w' else 'w'axes.text(rect.xy[0], rect.xy[1], labels[i], va='center', ha='center', fontsize=6, color=text_color, bbox=dict(facecolor=color,lw=0))

之后绘图,boxes就是把变回来原来的性质,boxes[100,100,:,:]为在像素点100,100上的所有锚框,第三个参数是锚框的索引为6是因为s和r各有三个,按理来说应该是3+3-1=5,但是函数里没有把重复的(s1,r1)组合去掉,所以就有六个(多一个也无伤大雅),第四个参数大小为4,是锚框左上角和右下角的坐标,

boxes = Y.reshape((h, w, 6, 4))
d2l.set_figsize()
fig = d2l.plt.imshow(img)
bbox_scale = torch.tensor([[w, h, w, h]], dtype = torch.float32) # 归一化后乘回来
show_bboxes(fig.axes, boxes[100, 100,:,:] * bbox_scale, ['s=0.75, r=1', 's=0.75, r=2', 's=0.55, r=0.5', 's=0.5, r=1', 's=0.25, r=1'])

在这里插入图片描述
接下来介绍一下交互比,就是两个集合的交集/两个集合的并集
在这里插入图片描述
代码如下

# 计算交互比
def compute_intersection(set_1, set_2):# set_1 为(n1, 4) n1 表示框的数量# set_2 为(n2, 4) n2 表示框的数量# return n1中的框在每个n2框中的交集,shape为(n1, n2)# 左上角的点肯定是找maxlower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2].unsqueeze(0)) #set_1[:, :2].unsqueeze(1),变为(n1,1,2) 后面的变为(1,n2,2)# 根据广播机制,n1中的每个点都会跟n2的比较,返回(n1,n2,2)# 右下角找minupper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:].unsqueeze(0))intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0) # 计算宽度和高度 n1,n2,2return intersection_dims[:, :, 0] * intersection_dims[:, :, 1]def compute_jaccard(set_1, set_2):intersection = compute_intersection(set_1, set_2)areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1])   # n1areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1])   # n2union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersectionreturn intersection / union

标注训练集的锚框

在训练集中,我们将每个锚框当做一个训练样本,每个锚框有两个标签,一个是锚框的类别,一个是锚框的偏移量,在目标检测时,我们首先生成多个锚框,然后为每个锚框预测类别以及偏移量,接着根据预测的偏移量调整锚框位置从而得到预测边界框,最后筛选需要输出的预测边界框。
直接借用一下动手学深度学习里的把
在这里插入图片描述
在这里插入图片描述
接下来我们给个具体的例子,。我们为读取的图像中的猫和狗定义真实边界框,其中第一个元素为类别(0为狗,1为猫),剩余4个元素分别为左上角的x和y坐标以及右下角的x和y轴坐标(值域在0到1之间)。这里通过左上角和右下角的坐标构造了5个需要标注的锚框,先画出这些锚框与真实边界框在图像中的位置。

bbox_scale = torch.tensor([w, h, w, h], dtype = torch.float32)
ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92], [1, 0.55, 0.2, 0.9, 0.88]])
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],[0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],[0.57, 0.3, 0.92, 0.9]])
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog','cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4'])

在这里插入图片描述
接下来这个函数实现锚框的标注和偏移量标注

# 实现为锚框标注类别和偏移量,将背景设为0, 1为狗,2为猫
def assign_anchor(bb, anchor, jaccard_threshold=0.5):# bb 真实边界框 nb, 4# anchor 待分配的anchor# jaccard_threshold 阈值# return (na, )  为每个anchor分配真实bb索引,未分配为-1na = anchor.shape[0]nb = bb.shape[0]jaccard = compute_jaccard(anchor, bb).detach().cpu().numpy() # shape (na, nb)assigned_idx = np.ones(na) * -1# 先为每个bb 分配anchor 此时不需要大于阈值jaccard_cp = jaccard.copy()for j in range(nb):i = np.argmax(jaccard_cp[:, j])assigned_idx[i] = jjaccard_cp[i:] = float('-inf')  # 赋值为负无穷,相当于去掉这一行# 还未被分配的anchor,要满足阈值for i in range(na):if assigned_idx[i] == -1:  # 未被分配j = np.argmax(jaccard[i, :])if jaccard[i, j] >= jaccard_threshold:assigned_idx[i] = jreturn torch.tensor(assigned_idx, dtype=torch.long)def xy_to_cxcy(xy):#将(x_min, y_min, x_max, y_max)形式的anchor转换成(center_x, center_y, w, h)形式的.return torch.cat([(xy[:, 2:] + xy[:, :2]) / 2,  # cx cyxy[:, 2:] - xy[:, :2]], 1)  # w hdef MultiBoxTarget(anchor, label): '''args:anchor: torch.tensor 输入的锚框,一般是通过MultiBoxPrior生成, (1, 锚框总数,4)label: 真实标签,(bn, 每张图片最多的真实锚框数,5)每张图片最多的真实锚框数 或许描述为图片中最多的真实锚框数 更合适一些第二维度中,如果给定的照片没有那么多锚框,先用-1填充,最后一维为[类别标签,四个坐标值]每张图片最多的真实锚框数:这是一个预设的最大值,用于确保每张图片在这个批量中都有一个固定大小的空间来存储其真实锚框信息。由于不同的图片可能有不同数量的真实锚框(例如,一张图片可能有3个物体,另一张可能有5个),所以需要设定一个最大数,以便在批量处理时保持数据结构的一致性。return[bbox_offset, bbox_mask, cls_labels]bbox_offset : 每个锚框的标注偏移量, (bn, 锚框总数*4)bbox_mask : 形同bbox_offset,每个锚框的掩码,一一对应上面的偏移量, 负类锚框(背景)对应的掩码为0, 正类均为1cls_labels : 每个锚框的标注类别,0为背景, 形状为(bn, 锚框总数)'''assert len(anchor.shape) == 3 and len(label.shape) == 3bn = label.shape[0]def MultiBoxTarget_one(anc, lab, eps=1e-6):'''MultiBoxTarget函数的辅助函数, 处理batch中的一个Args:anc : shape of (锚框总数, 4)lab : shape of (真实锚框数, 5) eps : 一个极小值,防止log 0return offset : (锚框总数*4)mask (锚框总数*4, )cls_labels : (锚框总数)'''an = anc.shape[0]assigned_idx = assign_anchor(lab[:, 1:], anc) # (锚框总数bbox_mask = ((assigned_idx >= 0).float().unsqueeze(-1)).repeat(1,4) # unsqueeze 在最后加一个维度,repeat(1,4)在第二个(刚刚加的)重复四次,变成(锚框总数,4)cls_labels = torch.zeros(an, dtype = torch.long) # 0表示背景assigned_bb = torch.zeros((an, 4), dtype = torch.float32) # 所有anchor对应的bb坐标for i in range(an):bb_idx = assigned_idx[i]if bb_idx >= 0 : # 非背景cls_labels[i] = lab[bb_idx, 0].long().item() + 1 # 注意+1assigned_bb[i, :] = lab[bb_idx, 1:]center_anc = xy_to_cxcy(anc)  #(center_x, center_y, w, h)center_assigned_bb = xy_to_cxcy(assigned_bb)offset_xy = 10.0 * (center_assigned_bb[:, :2] - center_anc[:, :2]) / center_anc[:,2:]offset_wh = 5.0 * torch.log(eps + center_assigned_bb[:, 2:] / center_anc[:, 2:])offset = torch.cat([offset_xy, offset_wh], dim=1) * bbox_mask # (锚框总数, 4)return offset.view(-1), bbox_mask.view(-1), cls_labelsbatch_offset = []batch_mask = []batch_cls_labels = []for b in range(bn):offset, bbox_mask, cls_labels = MultiBoxTarget_one(anchor[0, :, :], label[b, :, :])batch_offset.append(offset)batch_mask.append(bbox_mask)batch_cls_labels.append(cls_labels)bbox_offset = torch.stack(batch_offset)bbox_mask = torch.stack(batch_mask)cls_labels = torch.stack(batch_cls_labels)return bbox_offset, bbox_mask, cls_labels

进行一下测试

ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],[1, 0.55, 0.2, 0.9, 0.88]])
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],[0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],[0.57, 0.3, 0.92, 0.9]])
labels = MultiBoxTarget(anchors.unsqueeze(dim=0),ground_truth.unsqueeze(dim=0))
labels[2] # tensor([[2, 1, 2, 0, 2]]) 标签
labels[1] # tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 1.]]) 掩码
labels[0] # 偏移量

最后呢,介绍一下非极大值抑制,也就是NMS,最后输出的话我们很可能会得到很多的框,我们肯定不想看到那么多框,于是就有了NMS,原理大概是这样的,首先我们按每个框所属类别(非背景)的置信度降序排序,然后跟置信度最高的交互比超过阈值了,我们就把他去掉,依次往下类推
举个例子,先在一个图像上标几个框

# NMS
# 先假设偏移量都为0
anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],[0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])
offset_preds = torch.tensor([0.0] * (4 * len(anchors)))
cls_probs = torch.tensor([[0., 0., 0., 0.,],  # 背景的预测概率[0.9, 0.8, 0.7, 0.1],  # 狗的预测概率[0.1, 0.2, 0.3, 0.9]])  # 猫的预测概率
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])

在这里插入图片描述
然后是NMS函数的编写

# 以下函数已保存在d2lzh_pytorch包中方便以后使用
from collections import namedtuple
# 这行代码使用了 Python 的 namedtuple 函数,来定义一个命名元组 Pred_BB_Info。
# 命名元组是标准元组类型的子类,它允许元素通过名称以及位置进行访问,这使得代码更加可读和自文档化。
Pred_BB_Info = namedtuple("Pred_BB_Info", ["index", "class_id", "confidence", "xyxy"])
def non_max_suppression(bb_info_list, nms_threshold = 0.5):'''args:bb_info_list:Pred_BB_Info的列表, 包括预测类别、置信度等信息nms_threshold 阈值return output: Pred_BB_Info的列表, 只保留过滤后的边界框信息'''output = []# 先根据置信度高低排序sorted_bb_info_list = sorted(bb_info_list, key = lambda x:x.confidence, reverse=True)while len(sorted_bb_info_list) != 0:best = sorted_bb_info_list.pop(0)output.append(best)if len(sorted_bb_info_list) == 0:breakbb_xyxy = []for bb in sorted_bb_info_list:bb_xyxy.append(bb.xyxy)#iou = compute_jaccard(torch.tensor([best.xyxy]), torch.tensor([bb_xyxy]))[0] # (len(sorted_bb_info_list), )iou = compute_jaccard(torch.tensor([best.xyxy]), torch.tensor(bb_xyxy))[0] # shape: (len(sorted_bb_info_list), )n = len(sorted_bb_info_list)sorted_bb_info_list = [sorted_bb_info_list[i] for i in range(n) if iou[i] <= nms_threshold] # 去掉大于阈值的return outputdef MultiBoxDetection(cls_prob, loc_pred, anchor, nms_threshold = 0.5):'''args:cls_prob : 经过softmax后得到各个锚框的准确率, shape(bn, 预测总类别数+1, 锚框个数)loc_pred : 预测各个锚框的偏移量 (bn, 锚框个数*4)anchor : (1, 锚框个数,4) MultiBoxPrior输出的默认锚框nms_threshold:阈值return 所有锚框的信息,shape(bn, 锚框个数, 6)class_id, confidence, xmin,ymin,xmax,ymax'''assert len(cls_prob.shape) == 3 and len(loc_pred.shape) == 2 and len(anchor.shape) == 3bn = cls_prob.shape[0]def MultiBoxDetection_one(c_p, l_p, anc, nms_threshold=0.5):'''c_p (预测类别个数+1, 锚框个数)l_p  (锚框个数*4)anc (锚框个数,4)return output (锚框个数, 6)'''pred_bb_num = c_p.shape[1]anc = (anc + l_p.view(pred_bb_num, 4)).detach().cpu().numpy() # 加上偏移量confidence, class_id = torch.max(c_p, 0)confidence = confidence.detach().cpu().numpy()class_id = class_id.detach().cpu().numpy()# 正类label从0开始pred_bb_info = [Pred_BB_Info(index = i, class_id = class_id[i] - 1, confidence = confidence[i], xyxy=[*anc[i]]) for i in range(pred_bb_num)]obj_bb_idx = [bb.index for bb in non_max_suppression(pred_bb_info, nms_threshold)] #  当然也有可能选中背景output = []for bb in pred_bb_info:output.append([(bb.class_id if bb.index in obj_bb_idx else -1.0),  # 选中背景也是-1bb.confidence,*bb.xyxy])return torch.tensor(output)batch_output = []for b in range(bn):batch_output.append(MultiBoxDetection_one(cls_prob[b], loc_pred[b], anchor[0], nms_threshold))return torch.stack(batch_output)output = MultiBoxDetection(cls_probs.unsqueeze(dim=0), offset_preds.unsqueeze(dim=0),anchors.unsqueeze(dim=0), nms_threshold=0.5)
output

在这里插入图片描述
output输出是这样的,第一个元素-1表示被抑制或者是背景,0是狗1是猫,第二个元素就是概率,后面四个元素是左上角和右下角坐标

最后画图

fig = d2l.plt.imshow(img)
for i in output[0].detach().cpu().numpy():if i[0] == -1:continuelabel = ('dog=', 'cat=')[int(i[0])] + str(i[1])show_bboxes(fig.axes, [torch.tensor(i[2:]) * bbox_scale], label)

在这里插入图片描述

这篇关于目标检测锚框的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/485984

相关文章

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品