Flink反压如何查看和优化

2023-12-12 17:52
文章标签 查看 优化 flink 反压

本文主要是介绍Flink反压如何查看和优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        我们在使用Flink程序进行流式数据处理时,由于种种原因难免会遇到性能问题,如我们在使用Flink程序消费kafka数据,可能会遇到kafka数据有堆积的情况,并且随着时间的推移,数据堆积越来越多,这就表名消费处理数据的速度没有跟上生产的速度。面对这种情况,我们如何知道到底哪个环节造成性能瓶颈问题,这就需要我们对flink作业链路进行分析排查,找出存在瓶颈的算子。好在flink为我们提供了任务监控的Web UI,我们可以可以通过监控的算子反压情况找出性能瓶颈的算子。

Flink 1.5 之前是基于 TCP 流控 + bounded buffer 实现反压。
Flink 1.5 之后实现了自己托管的 credit – based 流控机制,在应用层模拟 TCP 的流控机制。 

 

         反压如果不能得到正确的处理,可能会影响到 checkpoint 时长和 state 大小,甚至可能会导致资源耗尽甚至系统崩溃。

 

Flink的反压机制

        Flink的反压(BackPressure)机制是通过周期性对taskManager线程的栈信息采样,计算被阻塞在请求输出Buffer的线程比率来确定,默认情况下,比率在0.1以下为OK,0.1到0.5为LOW,超过0.5则为HIGH。算子链如果存在反压,则意味着某个算子存在瓶颈,即其处理速率跟不上上游发送数据的速率,从而需要对上游进行限速,影响任务整体处理性能。所以,我们需要找出存在性能瓶颈的算子节点,优化对应的算子,才能解决整体的性能问题。算子是否存在反压,可以通过Flink任务提供的Web UI的反压状态表现出来,根据算子链的反压状态,找出存在性能瓶颈的算子,从而有针对性的进行优化。比如,我们的流作业在存在性能问题的情况下,会导致数据源消费速率跟不上生产速率,从而引起Kafka消费组的积压。在这种情况下,可以通过算子的反压和时延,确定算子的性能瓶颈点。

反压场景进行分析及应对处理

下面对flink任务常见的反压场景进行分析及应对处理:

  • kafka数据有堆积,但所有算子反压都正常(蓝色)

该场景说明性能瓶颈点在Source,主要是受数据读取速度影响,此时可以通过增加Kafka分区数并增加source并发解决。

  • 作业首个或非倒数第二个算子反压很高(红色)

该场景说明性能瓶颈点在Vertex2算子,可以通过查看该算子描述,确认该算子具体功能,以进行下一步优化。

  • 作业最后一个算子反压正常(蓝色),但前面的算子都高反压(红色)

该场景说明性能瓶颈点在sink算子(Vertex3),可以通过调整sink.parallelism来优化.但还需要根据对应的具体数据源具体优化,比如对于JDBC数据源,可以通过调整写出批次及刷写时间(sink.buffer-flush.max-rows 、sink.buffer-flush.interval)等。

  • 反压算子下游有多个算子

如下,作业一个算子反压高(红色),而后后续多个并行算子反压正常(蓝色)

该场景说明性能瓶颈在Vertex2或者Vertex3,为了进一步确定具体瓶颈点算子,可以在FlinkUI页面开启inPoolUsage监控。如果某个算子并发对应的inPoolUsage长时间为100%,则该算子大概率为性能瓶颈点,需分析该算子以进行下一步优化。


inPoolUsage 监控

总结

依次算子链从前往后找到最后一个反压算子节点,则瓶颈一般为该节点的下游节点,如果其下游有多个节点,则通过查看其所有下游节点的Metrics监控的buffers.inPoolUsage,如果某节点的buffers.inPoolUsage长期为1,则该节点即为瓶颈节点。

这篇关于Flink反压如何查看和优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/485455

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

mysql如何查看当前连接数

《mysql如何查看当前连接数》:本文主要介绍mysql如何查看当前连接数问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql查看当前连接数查看mysql数据库允许最大连接数总结mysql查看当前连接数查看当前连接数SHOW STATUS LIKE

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、