RK3588安装TVM-CPU版本

2023-12-12 16:28
文章标签 安装 版本 cpu rk3588 tvm

本文主要是介绍RK3588安装TVM-CPU版本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.背景

        TVM是一个开源的机器学习编译器栈,用于优化和编译深度学习模型,以在各种硬件平台上实现高效性能。以下是关于TVM的详细介绍:

  1. TVM的目标是将深度学习模型的优化和编译过程自动化,以便开发人员可以轻松地将其模型部署到各种硬件平台上,包括CPU、GPU、FPGA等。
  2. TVM的核心功能包括自动优化、代码生成和硬件抽象。它可以根据硬件平台的特点自动调整模型的计算图,生成高效的代码,并通过硬件抽象层与底层硬件交互。
  3. TVM支持多种深度学习框架,包括TensorFlow、PyTorch、MXNet等。这意味着开发人员可以使用他们熟悉的框架来开发模型,并将其转换为TVM可优化的格式。
  4. TVM还具有可扩展性和灵活性。它允许开发人员自定义优化策略和硬件后端,以适应特定的应用场景和硬件平台。
  5. 在性能方面,TVM通过优化计算图和利用硬件特性来提高模型的执行效率。它还可以与其他编译器和优化工具集成,以进一步提高性能。
  6. 最后,TVM是一个开源项目,得到了广泛的社区支持和贡献。这意味着开发人员可以从社区中获取支持和帮助,并与其他人共享他们的工作和成果。

        TVM可以在ARM开发板上进行部署和优化。以下是TVM在ARM开发板上的一些应用和优化方法:

  1. 模型优化:TVM可以根据ARM开发板的硬件特性,自动优化深度学习模型的计算图,以提高执行效率。它可以通过减少计算量、优化内存访问和利用硬件加速等方法来改进模型性能。
  2. 代码生成:TVM可以生成适应ARM开发板的机器代码。它可以根据ARM的指令集和硬件特性,生成高效的汇编代码或C++代码,以实现模型的高效执行。
  3. 硬件抽象:TVM通过硬件抽象层与底层硬件交互,可以屏蔽不同ARM开发板之间的硬件差异。这意味着开发人员可以在不同的ARM开发板上使用相同的TVM接口和工具链,简化了开发和部署过程。
  4. 深度学习框架支持:TVM支持多种深度学习框架,包括TensorFlow、PyTorch等。开发人员可以使用他们熟悉的框架来开发模型,并将其转换为TVM可优化的格式,以便在ARM开发板上进行部署和优化。
  5. 自定义优化策略和硬件后端:TVM具有可扩展性和灵活性,允许开发人员自定义优化策略和硬件后端。这意味着开发人员可以根据ARM开发板的具体特性和需求,定制适合该平台的优化策略和硬件后端,以进一步提高性能。
  6. 社区支持和贡献:TVM是一个开源项目,得到了广泛的社区支持和贡献。开发人员可以从社区中获取支持和帮助,并与其他人共享他们的工作和成果,以推动TVM在ARM开发板上的应用和优化。

2. 源码安装

(1)下载源码

        TVM源码地址:https://github.com/apache/tvm/tags

        通过Downloads下载就行了。

(2)详细步骤

根据博客在RK3588 CPU 安装TVM - 知乎

        第1步-第3步都可以按照博主的步骤来

step1:准备环境

sudo apt-get update
sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo5 libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev

如果出现CMake版本不匹配时可以通过源码安装。采用源码方式安装3.18.6版本。源码下载路径:https://cmake.org/files/

$ tar zxvf cmake-3.18.6.tar.gz
cmake-3.18.6$ ./configure
cmake-3.18.6$ make -j4
cmake-3.18.6$ sudo make install
重启设备

step2:查看(1)的源码下载下来

tar zxvf apache-tvm-src-v0.10.0.tar.gz
cd apache-tvm-src-v0.10.0
mkdir build
cp cmake/config.cmake build

step3:准备llvm

TVM的CPU代码生成需要LLVM(4.0或者更高版本)。

下载预编译的llvm 14.0.0版本 https://github.com/llvm/llvm-project/releases/tag/llvmorg-14.0.0

解压到指定路径,并将解压后的bin目录添加到PATH。

tar xvf clang+llvm-14.0.0-aarch64-linux-gnu.tar.xz
vim ~/.bashrc
export PATH=$PATH:/home/firefly/clang+llvm-14.0.0-aarch64-linux-gnu/bin
source ~/.bashrc

在build/config.cmake 编辑set(USE_LLVM /home/username/clang+llvm-14.0.0-aarch64-linux-gnu/bin/llvm-config)

set(USE_LLVM ON):这里的ON在build/config.cmake 中替换掉

set(USE_CCACHE AUTO) 加速TVM编译

step4:开始编译

cd build
cmake .. -G Ninja
ninja

step5:安装Python版本的tvm

        如果相关的库没有安装,根据提示进行安装即可,我将我的贴出来

sudo vim ~/.bashrc

export TVM_HOME=/path/to/tvm # 编译的python/tvm路径

# export TVM_HOME=/home/ubuntu/apache-tvm-src-v0.14.0/python/tvm
# export PYTHONPATH=$TVM_HOME/python3.7:${PYTHONPATH}
export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}

source ~/.bashrc

cd /home/ubuntu/apache-tvm-src-v0.10.0/python 
python3.7 setup.py install --user # 我的是3.7,根据自己的修改

        到此,已经安装完成

3. 样例执行

1、下载模型

wget https://github.com/onnx/models/raw/b9a54e89508f101a1611cd64f4ef56b9cb62c7cf/vision/classification/resnet/model/resnet50-v2-7.onnx

2、编辑脚本 tvmcpythonintro.py

from tvm.driver import tvmc
model = tvmc.load('resnet50-v2-7.onnx')
tvmc.tune(model, target="llvm")
package = tvmc.compile(model, target="llvm", tuning_records = "records.log")
result = tvmc.run(package, device="cpu")
print(result )

这篇关于RK3588安装TVM-CPU版本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/485238

相关文章

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默