本文主要是介绍最优化大作业(二): 常用无约束最优化方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
- 问题描述
对以下优化问题
选取初始点,分别用以下方法求解
(1)最速下降法;
(2)Newton法或修正Newton法;
(3)共轭梯度法。
- 基本原理
(1)最速下降法
图1 最速下降法流程图
(2)Newton法
图2 Newton法流程图
(3)共轭梯度法
图3 共轭梯度法流程图
- 实验结果
(1)最速下降法
迭代 次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
梯度 模值 |
| 5.4210 | 1.6680 | 0.9532 | 0.2933 | 0.1676 | 0.0516 | 0.0295 | 0.0091 |
搜索 方向 |
| [9.00, 3.00] | [-1.71, 5.14] | [1.58, 0.53] | [-0.30, 0.90] | [0.28, 0.09] | [-0.05, 0.16] | [0.05, 0.02] | [-0.01, 0.03] |
当前 迭代点 | (1.00, 1.00) | (7.43, 3.14) | (6.77, 5.12) | (7.90, 5.50) | (7.78, 5.85) | (7.98, 5.91) | (7.96, 5.97) | (8.00, 5.98) | (7.99, 6.00) |
当前迭代点值 | 47.00 | 14.8571 | 9.2057 | 8.2120 | 8.0373 | 8.0066 | 8.0012 | 8.0002 | 8.0000 |
表1 最速下降法迭代过程
图4 最速下降法迭代过程图
(2)Newton法
迭代次数 | 1 | 2 |
梯度模值 |
| 0.0000 |
搜索方向 |
| [7.00,5.00] |
当前迭代点 | (1.00,1.00) | (8.00,6.00) |
当前迭代点值 | 47.00 | 8.0000 |
表2 Newton法迭代过程
图5 Newton法迭代过程图
(3)共轭梯度法
迭代次数 | 1 | 2 | 3 |
梯度模值 |
| 5.4210 | 0.0000 |
搜索方向 |
| [9.00,3.00] | [1.22,6.12] |
当前迭代点 | (1.00,1.00) | (7.43,3.14) | (8.00,6.00) |
当前迭代点值 | 47.00 | 14.8571 | 8.0000 |
表3 共轭梯度法迭代过程
图6 共轭梯度法迭代过程图
对比结果可得,三种算法均得到同一个极值点(8, 6)。
- 代码展示
import matplotlib.pyplot as plt
from sympy import *
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
t = symbols('t')# 优化目标函数
def fun1():x1, x2 = symbols('x1 x2')y = np.power(x1, 2) + np.power(x2, 2) - x1*x2 -10 * x1 - 4 *x2 +60return ydef fun2(x1, x2):return np.power(x1, 2) + np.power(x2, 2) - x1 * x2 - 10 * x1 - 4 * x2 + 60# 计算当前梯度
def cal_gradient_cur(X_cur):x1, x2 = symbols('x1 x2')f = fun1()g = [diff(f, x1), diff(f, x2)]g[0] = g[0].evalf(subs={x1:X_cur[0], x2:X_cur[1]})g[1] = g[1].evalf(subs={x1:X_cur[0], x2:X_cur[1]})return np.array(g)# 计算lambda, X1: 上一轮迭代点, X2: 本次迭代点
def cal_lambda(X1, X2):g1 = np.array(cal_gradient_cur(X1))g2 = np.array(cal_gradient_cur(X2))g1_norm_2 = np.sum(g1**2, axis=0)g2_norm_2 = np.sum(g2**2, axis=0)lamda = g2_norm_2 / g1_norm_2return lamda# 更新迭代点X
def update_X(X, P):return np.array(X + t*P)# 更新迭代点X
def update_X_cur(X, t, P):return np.array(X + t*P)# 计算最优步长
def cal_best_t(X_cur):x1, x2 = symbols('x1 x2')f = fun1()f_t = f.subs({x1: X_cur[0], x2: X_cur[1]})return solve(diff(f_t, t), t)# 计算梯度模值
def cal_g_norm_cur(X):g_cur = np.array(cal_gradient_cur(X), dtype=np.float32)return np.sqrt(np.sum(g_cur**2, axis=0))def draw(X0):plt.figure()ax = plt.axes(projection='3d')xx = np.arange(-20, 20, 0.1)yy = np.arange(-20, 20, 0.1)x1, x2 = np.meshgrid(xx, yy)Z = fun2(x1, x2)ax.plot_surface(x1, x2, Z, cmap='rainbow', alpha=0.5)X = np.array([X0[0]])Y = np.array([X0[1]])X, Y = np.meshgrid(X, Y)Z = fun2(X, Y)print("初始点:(%0.2f,%0.2f,%0.2f)" % (X, Y, Z))ax.scatter(X, Y, Z, c='k', s=20)ax.set_xlabel('X')ax.set_ylabel('Y')ax.set_zlabel('Z')# ax.legend()# ax.contour(X,Y,Z, zdim='z',offset=-2,cmap='rainbow) #等高线图,要设置offset,为Z的最小值return axclass C_gradient(object):def __init__(self, X0):self.X0 = X0# 更新搜索方向def cal_P(self, g_cur, P1, lamda):P = -1 * g_cur + lamda*P1return np.array(P)def search(self):X1 = self.X0g_norm_cur = cal_g_norm_cur(X1) # 计算梯度模值count = 0result = []if(g_norm_cur <= 0.01):print("极值点为({:.2f},{:.2f})".format(X1[0], X1[1]))x1, x2 = symbols('x1 x2')f = fun1()min_value = f.evalf(subs={x1: X1[0], x2: X1[1]})print("极小值为{:.4f}".format(min_value))else:P = -1 * cal_gradient_cur(X1) # 计算当前负梯度方向while True:X2 = update_X(X1, P)t_cur = cal_best_t(X2)X2 = update_X_cur(X1, t_cur, P)g_cur = cal_gradient_cur(X2)g_norm_cur = cal_g_norm_cur(X2)x1, x2 = symbols('x1 x2')f = fun1()min_value = f.evalf(subs={x1: X2[0], x2: X2[1]})result.append([float(X2[0]), float(X2[1]), float(min_value)])print("当前梯度模值为{:.4f},搜索方向为[{:.2f},{:.2f}]".format(g_norm_cur, P[0], P[1]), end=" ")print("极值点为({:.2f},{:.2f}), 极小值为{:.4f}".format(result[count][0], result[count][1], result[count][2]))if(g_norm_cur <= 0.01):return np.array(result)else:lamda = cal_lambda(X1, X2)P = self.cal_P(g_cur, P, lamda)X1 = X2count += 1def C_gradient_main():print("当前搜索方法为共轭梯度法")X0 = np.array([1, 1])ax = draw(X0)cg = C_gradient(X0)cg.ax = axresult = cg.search()ax.scatter(np.array([result[:, 0]]), np.array([result[:, 1]]), np.array([result[:, 2]]), c='k', s=20)plt.show()class steepest_gradient(object):def __init__(self, X0):self.X0 = X0def search(self):X1 = self.X0result = []count = 0while True:P = -1 * cal_gradient_cur(X1) # 计算当前负梯度方向X2 = update_X(X1, P)t_cur = cal_best_t(X2)X2 = update_X_cur(X1, t_cur, P)g_norm_cur = cal_g_norm_cur(X2)x1, x2 = symbols('x1 x2')f = fun1()min_value = f.evalf(subs={x1: X2[0], x2: X2[1]})result.append([float(X2[0]), float(X2[1]), float(min_value)])print("当前梯度模值为{:.4f},搜索方向为[{:.2f},{:.2f}]".format(g_norm_cur, P[0], P[1]), end=" ")print("极值点为({:.2f},{:.2f}), 极小值为{:.4f}".format(result[count][0], result[count][1], result[count][2]))if(g_norm_cur <= 0.01):return np.array(result)else:X1 = X2count += 1def steepest_gradient_main():print("当前搜索方法为最速下降法")X0 = np.array([1, 1])ax = draw(X0)a = steepest_gradient(X0)a.ax = axresult = a.search()ax.scatter(np.array([result[:, 0]]), np.array([result[:, 1]]), np.array([result[:, 2]]), c='k', s=20)plt.show()class Newton(object):def __init__(self, X0):self.X0 = X0def cal_hesse(self):return np.array([[2, -1], [-1, 2]])def search(self):X1 = self.X0count = 0result = []while True:g = cal_gradient_cur(X1)g = g.reshape((1, 2)).Th = np.linalg.inv(self.cal_hesse())P = -1 * np.dot(h, g).ravel()X2 = update_X(X1, P)t_cur = cal_best_t(X2)X2 = update_X_cur(X1, t_cur, P)x1, x2 = symbols('x1 x2')f = fun1()min_value = f.evalf(subs={x1: X2[0], x2: X2[1]})g_norm_cur = cal_g_norm_cur(X2)result.append([float(X2[0]), float(X2[1]), float(min_value)])print("当前梯度模值为{:.4f},搜索方向为[{:.2f},{:.2f}]".format(g_norm_cur, P[0], P[1]), end=" ")print("极值点为({:.2f},{:.2f}), 极小值为{:.4f}".format(result[count][0], result[count][1], result[count][2]))if(g_norm_cur <= 0.01):return np.array(result)else:X1 = X2count += 1def newton_main():print("当前搜索方法为newton法")X0 = np.array([1, 1])ax = draw(X0)b = Newton(X0)result = b.search()ax.scatter(np.array([result[:, 0]]), np.array([result[:, 1]]), np.array([result[:, 2]]), c='k', s=20)plt.show()if __name__ == '__main__':steepest_gradient_main()newton_main()C_gradient_main()
这篇关于最优化大作业(二): 常用无约束最优化方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!