最优化大作业(二): 常用无约束最优化方法

2023-12-12 14:08

本文主要是介绍最优化大作业(二): 常用无约束最优化方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 问题描述

对以下优化问题

                                                   \small minf\left ( x \right )=x_1^2+x_2^2+x_1x_2-10x_1-4x_2+60

选取初始点\small X_0=\left [ 0,0 \right ]^T,\varepsilon =10^{-2},分别用以下方法求解

(1)最速下降法;

(2)Newton法或修正Newton法;

(3)共轭梯度法。

 

  • 基本原理

(1)最速下降法

 

图1  最速下降法流程图

(2)Newton法

图2  Newton法流程图

 

(3)共轭梯度法

 

图3  共轭梯度法流程图

 

  • 实验结果

(1)最速下降法

迭代

次数

1

2

3

4

5

6

7

8

9

梯度

模值

 

5.4210

1.6680

0.9532

0.2933

0.1676

0.0516

0.0295

0.0091

搜索

方向

 

[9.00,

3.00]

[-1.71,

5.14]

[1.58,

0.53]

[-0.30,

0.90]

[0.28,

0.09]

[-0.05,

0.16]

[0.05,

0.02]

[-0.01,

0.03]

当前

迭代点

(1.00,

1.00)

(7.43,

3.14)

(6.77,

5.12)

(7.90,

5.50)

(7.78,

5.85)

(7.98,

5.91)

(7.96,

5.97)

(8.00,

5.98)

(7.99,

6.00)

当前迭代点值

47.00

14.8571

9.2057

8.2120

8.0373

8.0066

8.0012

8.0002

8.0000

表1  最速下降法迭代过程

图4  最速下降法迭代过程图

 

 

(2)Newton法

迭代次数

1

2

梯度模值

 

0.0000

搜索方向

 

[7.00,5.00]

当前迭代点

(1.00,1.00)

(8.00,6.00)

当前迭代点值

47.00

8.0000

表2  Newton法迭代过程

图5  Newton法迭代过程图

 

(3)共轭梯度法

迭代次数

1

2

3

梯度模值

 

5.4210

0.0000

搜索方向

 

[9.00,3.00]

[1.22,6.12]

当前迭代点

(1.00,1.00)

(7.43,3.14)

(8.00,6.00)

当前迭代点值

47.00

14.8571

8.0000

表3  共轭梯度法迭代过程

 

 

图6  共轭梯度法迭代过程图

 

对比结果可得,三种算法均得到同一个极值点(8, 6)。

 

  • 代码展示
import matplotlib.pyplot as plt
from sympy import *
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
t = symbols('t')# 优化目标函数
def fun1():x1, x2 = symbols('x1 x2')y = np.power(x1, 2) + np.power(x2, 2) - x1*x2 -10 * x1 - 4 *x2 +60return ydef fun2(x1, x2):return np.power(x1, 2) + np.power(x2, 2) - x1 * x2 - 10 * x1 - 4 * x2 + 60# 计算当前梯度
def cal_gradient_cur(X_cur):x1, x2 = symbols('x1 x2')f = fun1()g = [diff(f, x1), diff(f, x2)]g[0] = g[0].evalf(subs={x1:X_cur[0], x2:X_cur[1]})g[1] = g[1].evalf(subs={x1:X_cur[0], x2:X_cur[1]})return np.array(g)# 计算lambda, X1: 上一轮迭代点, X2: 本次迭代点
def cal_lambda(X1, X2):g1 = np.array(cal_gradient_cur(X1))g2 = np.array(cal_gradient_cur(X2))g1_norm_2 = np.sum(g1**2, axis=0)g2_norm_2 = np.sum(g2**2, axis=0)lamda = g2_norm_2 / g1_norm_2return lamda# 更新迭代点X
def update_X(X, P):return np.array(X + t*P)# 更新迭代点X
def update_X_cur(X, t, P):return np.array(X + t*P)# 计算最优步长
def cal_best_t(X_cur):x1, x2 = symbols('x1 x2')f = fun1()f_t = f.subs({x1: X_cur[0], x2: X_cur[1]})return solve(diff(f_t, t), t)# 计算梯度模值
def cal_g_norm_cur(X):g_cur = np.array(cal_gradient_cur(X), dtype=np.float32)return np.sqrt(np.sum(g_cur**2, axis=0))def draw(X0):plt.figure()ax = plt.axes(projection='3d')xx = np.arange(-20, 20, 0.1)yy = np.arange(-20, 20, 0.1)x1, x2 = np.meshgrid(xx, yy)Z = fun2(x1, x2)ax.plot_surface(x1, x2, Z, cmap='rainbow', alpha=0.5)X = np.array([X0[0]])Y = np.array([X0[1]])X, Y = np.meshgrid(X, Y)Z = fun2(X, Y)print("初始点:(%0.2f,%0.2f,%0.2f)" % (X, Y, Z))ax.scatter(X, Y, Z, c='k', s=20)ax.set_xlabel('X')ax.set_ylabel('Y')ax.set_zlabel('Z')# ax.legend()# ax.contour(X,Y,Z, zdim='z',offset=-2,cmap='rainbow)   #等高线图,要设置offset,为Z的最小值return axclass C_gradient(object):def __init__(self, X0):self.X0 = X0# 更新搜索方向def cal_P(self, g_cur, P1, lamda):P = -1 * g_cur + lamda*P1return np.array(P)def search(self):X1 = self.X0g_norm_cur = cal_g_norm_cur(X1)  # 计算梯度模值count = 0result = []if(g_norm_cur <= 0.01):print("极值点为({:.2f},{:.2f})".format(X1[0], X1[1]))x1, x2 = symbols('x1 x2')f = fun1()min_value = f.evalf(subs={x1: X1[0], x2: X1[1]})print("极小值为{:.4f}".format(min_value))else:P = -1 * cal_gradient_cur(X1)  # 计算当前负梯度方向while True:X2 = update_X(X1, P)t_cur = cal_best_t(X2)X2 = update_X_cur(X1, t_cur, P)g_cur = cal_gradient_cur(X2)g_norm_cur = cal_g_norm_cur(X2)x1, x2 = symbols('x1 x2')f = fun1()min_value = f.evalf(subs={x1: X2[0], x2: X2[1]})result.append([float(X2[0]), float(X2[1]), float(min_value)])print("当前梯度模值为{:.4f},搜索方向为[{:.2f},{:.2f}]".format(g_norm_cur, P[0], P[1]), end=" ")print("极值点为({:.2f},{:.2f}), 极小值为{:.4f}".format(result[count][0], result[count][1], result[count][2]))if(g_norm_cur <= 0.01):return np.array(result)else:lamda = cal_lambda(X1, X2)P = self.cal_P(g_cur, P, lamda)X1 = X2count += 1def C_gradient_main():print("当前搜索方法为共轭梯度法")X0 = np.array([1, 1])ax = draw(X0)cg = C_gradient(X0)cg.ax = axresult = cg.search()ax.scatter(np.array([result[:, 0]]), np.array([result[:, 1]]), np.array([result[:, 2]]), c='k', s=20)plt.show()class steepest_gradient(object):def __init__(self, X0):self.X0 = X0def search(self):X1 = self.X0result = []count = 0while True:P = -1 * cal_gradient_cur(X1)  # 计算当前负梯度方向X2 = update_X(X1, P)t_cur = cal_best_t(X2)X2 = update_X_cur(X1, t_cur, P)g_norm_cur = cal_g_norm_cur(X2)x1, x2 = symbols('x1 x2')f = fun1()min_value = f.evalf(subs={x1: X2[0], x2: X2[1]})result.append([float(X2[0]), float(X2[1]), float(min_value)])print("当前梯度模值为{:.4f},搜索方向为[{:.2f},{:.2f}]".format(g_norm_cur, P[0], P[1]), end=" ")print("极值点为({:.2f},{:.2f}), 极小值为{:.4f}".format(result[count][0], result[count][1], result[count][2]))if(g_norm_cur <= 0.01):return np.array(result)else:X1 = X2count += 1def steepest_gradient_main():print("当前搜索方法为最速下降法")X0 = np.array([1, 1])ax = draw(X0)a = steepest_gradient(X0)a.ax = axresult = a.search()ax.scatter(np.array([result[:, 0]]), np.array([result[:, 1]]), np.array([result[:, 2]]), c='k', s=20)plt.show()class Newton(object):def __init__(self, X0):self.X0 = X0def cal_hesse(self):return np.array([[2, -1], [-1, 2]])def search(self):X1 = self.X0count = 0result = []while True:g = cal_gradient_cur(X1)g = g.reshape((1, 2)).Th = np.linalg.inv(self.cal_hesse())P = -1 * np.dot(h, g).ravel()X2 = update_X(X1, P)t_cur = cal_best_t(X2)X2 = update_X_cur(X1, t_cur, P)x1, x2 = symbols('x1 x2')f = fun1()min_value = f.evalf(subs={x1: X2[0], x2: X2[1]})g_norm_cur = cal_g_norm_cur(X2)result.append([float(X2[0]), float(X2[1]), float(min_value)])print("当前梯度模值为{:.4f},搜索方向为[{:.2f},{:.2f}]".format(g_norm_cur, P[0], P[1]), end=" ")print("极值点为({:.2f},{:.2f}), 极小值为{:.4f}".format(result[count][0], result[count][1], result[count][2]))if(g_norm_cur <= 0.01):return np.array(result)else:X1 = X2count += 1def newton_main():print("当前搜索方法为newton法")X0 = np.array([1, 1])ax = draw(X0)b = Newton(X0)result = b.search()ax.scatter(np.array([result[:, 0]]), np.array([result[:, 1]]), np.array([result[:, 2]]), c='k', s=20)plt.show()if __name__ == '__main__':steepest_gradient_main()newton_main()C_gradient_main()

 

这篇关于最优化大作业(二): 常用无约束最优化方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/484903

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行