window10+TensorRT-8.2.5.1+yolov5 v6.2 c++部署

2023-12-12 11:30

本文主要是介绍window10+TensorRT-8.2.5.1+yolov5 v6.2 c++部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、准备工具

1.1、visual studio下载安装

参考:vs2019社区版下载教程(详细)_Redamancy_06的博客-CSDN博客_vs2019社区版

1.2、显卡驱动+cuda+cudnn安装

参考:win10系统+3060显卡驱动+cuda11.5+cudnn8.3安装_Bubble_water的博客-CSDN博客

一定要安装好visual studio软件之后再安装cuda(或者重装cuda),并且选择visual studio integration,否则后期配置会出现麻烦还需要自己复制一些东西去解决问题

1.3、tensorrt安装

参考:有道云笔记

1.4、cmake下载安装

cmake版本3.25.1,可以根据自己的情况选择安装自己需要的版本

官方网址:

https://cmake.org/download

下载地址:

https://github.com/Kitware/CMake/releases/download/v3.25.1/cmake-3.25.1-windows-x86_64.msihttps://github.com/Kitware/CMake/releases/download/v3.25.1/cmake-3.25.1-windows-x86_64.msi

 

 

 

 

 

 1.5、opencv下载:

自己源码编译,参考:win10+vs2017+opencv4.0.1+opencv_contrib-4.0.1详细教程_Bubble_water的博客-CSDN博客

或者直接下载官方编译好的文件,按照自己需要的版本下载:

Releases · opencv/opencv · GitHub
 

二、yolov5和tensorrtx源码下载
2.1、将下载下来的yolov5和tensorrtx仓库切换到6.2版本
yolov5仓库:https://github.com/ultralytics/yolov5,将其下载下来

将https://github.com/tronkko/dirent源码下载下来,cmakelist.txt里面会需要这个文件

切换到v6.2tag:

git checkout v6.2

如下图所示:

 2.2、tensorrtx仓库:https://github.com/wang-xinyu/tensorrtx,将其下载下来

切换到yolov5-v6.2tag:

git checkout yolov5-v6.2

如下图所示:

 四、cmake编译工程

4.1、修改tensorrtx\yolov5\CMakeLists.txt里面的内容如下:

cmake_minimum_required(VERSION 2.6)project(yolov5) #1
set(OpenCV_DIR "E:\\workspace\\dll\\opencv4\\build")  #2
set(OpenCV_INCLUDE_DIRS ${OpenCV_DIR}\\include) #3
set(OpenCV_LIB_DIRS ${OpenCV_DIR}\\x64\\vc16\\lib) #4
set(OpenCV_Debug_LIBS "opencv_world454d.lib") #5
set(OpenCV_Release_LIBS "opencv_world454.lib") #6
set(TRT_DIR "E:\\workspace\\dll\\tensorrt\\TensorRT-8.2.5.1\\TensorRT-8.2.5.1")  #7
set(TRT_INCLUDE_DIRS ${TRT_DIR}\\include) #8
set(TRT_LIB_DIRS ${TRT_DIR}\\lib) #9
set(Dirent_INCLUDE_DIRS "E:\\yolov5\\dirent\\include") #10add_definitions(-std=c++11)
add_definitions(-DAPI_EXPORTS)option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE Debug)set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads)# setup CUDA
find_package(CUDA REQUIRED)
message(STATUS "    libraries: ${CUDA_LIBRARIES}")
message(STATUS "    include path: ${CUDA_INCLUDE_DIRS}")include_directories(${CUDA_INCLUDE_DIRS})####
enable_language(CUDA)  # add this line, then no need to setup cuda path in vs
####
include_directories(${PROJECT_SOURCE_DIR}/include) #11
include_directories(${TRT_INCLUDE_DIRS}) #12
link_directories(${TRT_LIB_DIRS}) #13
include_directories(${OpenCV_INCLUDE_DIRS}) #14
link_directories(${OpenCV_LIB_DIRS}) #15
include_directories(${Dirent_INCLUDE_DIRS}) #16# -D_MWAITXINTRIN_H_INCLUDED for solving error: identifier "__builtin_ia32_mwaitx" is undefined
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -Ofast -D_MWAITXINTRIN_H_INCLUDED")# setup opencv
find_package(OpenCV QUIETNO_MODULENO_DEFAULT_PATHNO_CMAKE_PATHNO_CMAKE_ENVIRONMENT_PATHNO_SYSTEM_ENVIRONMENT_PATHNO_CMAKE_PACKAGE_REGISTRYNO_CMAKE_BUILDS_PATHNO_CMAKE_SYSTEM_PATHNO_CMAKE_SYSTEM_PACKAGE_REGISTRY
)message(STATUS "OpenCV library status:")
message(STATUS "    version: ${OpenCV_VERSION}")
message(STATUS "    lib path: ${OpenCV_LIB_DIRS}")
message(STATUS "    Debug libraries: ${OpenCV_Debug_LIBS}")
message(STATUS "    Release libraries: ${OpenCV_Release_LIBS}")
message(STATUS "    include path: ${OpenCV_INCLUDE_DIRS}")#add_executable(yolov5 ${PROJECT_SOURCE_DIR}/yolov5.cpp ${PROJECT_SOURCE_DIR}/common.hpp ${PROJECT_SOURCE_DIR}/yololayer.cu ${PROJECT_SOURCE_DIR}/yololayer.h)   #17add_executable(yolov5 ${PROJECT_SOURCE_DIR}/yolov5.cpp ${PROJECT_SOURCE_DIR}/yololayer.cu ${PROJECT_SOURCE_DIR}/yololayer.h ${PROJECT_SOURCE_DIR}/preprocess.cu ${PROJECT_SOURCE_DIR}/preprocess.h)   #4  ${PROJECT_SOURCE_DIR}/preprocess.cu ${PROJECT_SOURCE_DIR}/preprocess.h  这是后来加的用于解决错误2,下面也有说明target_link_libraries(yolov5 "nvinfer" "nvinfer_plugin") #18
target_link_libraries(yolov5 debug ${OpenCV_Debug_LIBS}) #19
target_link_libraries(yolov5 optimized ${OpenCV_Release_LIBS}) #20
target_link_libraries(yolov5 ${CUDA_LIBRARIES}) #21
target_link_libraries(yolov5 Threads::Threads)  

4.2、cmake运行

 选择自己的vs编译器版本和系统版本

 

 

 

 

 

 将tensorrtx\yolov5\gen_wts.py复制到https://github.com/ultralytics/yolov5训练源码文件夹下面

运行

#python gen_wts.py文件路径 -w pt权重文件路径

python gen_wts.py -w yolov5s.pt

运行结果如下:

 打开自己刚才build下面的Release文件夹,运行

需要将opencv_world454.dll放到Release文件夹下面,将wts序列化保持成tensorrt的engine格式

命令如下:

 ./yolov5.exe -s "E:\yolov5\yolov5\yolov5s.wts" yolov5s.engine s

 检测测试,说明成功了。接下来就是自己根据自己的情况进行封装程序了

 

 

 参考:

  • tensorrtx/run_on_windows.md at master · wang-xinyu/tensorrtx · GitHub
  • Tensorrtx+yolov5+windows10+vs2015+cuda11.1关键问题及步骤记录_如雾如电的博客-CSDN博客
  • windows上配置TensorRT yolov5 -6.0部署 tensorrtx视频流推理_野马AS的博客-CSDN博客
  • win10 tensorrtx yolov5使用方法_三毛的二哥的博客-CSDN博客_tensorrtx yolov5
  • win10 使用TensorRT部署 yolov5-v4.0(C++)_SongpingWang的博客-CSDN博客_yolov5 4.0
  • 【TensorRT】记一次使用C++接口TensorRT部署yolov5 v6.1模型的过程-pudn.com
  • Win10—YOLOv5实战+TensorRT部署+VS2019编译(小白教程~易懂易上手)---超详细_畅想未来2020的博客-CSDN博客_win yolo5编译
  • windows上配置TensorRT yolov5 -6.1部署 tensorrtx视频流推理-CFANZ编程社区
  • yolov5部署之七步完成tensorRT模型推理加速_Christo3的博客-CSDN博客_yolov5 tensorrt
  • YoloV5在tensorRT上加速(Windows)(C++)(webcam)_点PY的博客-CSDN博客_yolov5中webcam是什么

这篇关于window10+TensorRT-8.2.5.1+yolov5 v6.2 c++部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/484468

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c