Shi-Tomasi角点检测(python实现)

2023-12-12 04:50

本文主要是介绍Shi-Tomasi角点检测(python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1.Harris特征检测
    • 2.Shi-Tomasi角点检测
    • 3.Shi-Tomasi角点检测函数讲解
    • 4.代码实战

1.Harris特征检测

https://blog.csdn.net/Keep_Trying_Go/article/details/125384144


2.Shi-Tomasi角点检测

Shi-Tomasi是对Harris角点检测的改进;
由于Harris角点检测算法的稳定性和K系数有关,而K是一个经验值,所以不好设定其K的最佳值。


3.Shi-Tomasi角点检测函数讲解

goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, corners=None, mask=None, blockSize=None, useHarrisDetector=None, k=None):
Image:输入的原始图像
maxCorners:角点的最大数,值为0表示无限制
qualityLevel:角点的质量;小于的1.0的正数,一般在0.01-0.1之间;表示可接受角点的最低质量水平。该系数乘以最好的角点分数(也就是上面较小的那个特征值),作为可接受的最小分数;例如,如果最好的角点分数值为1500且质量系数为0.01,那么所有质量分数小于15的角都将被忽略
minDistance:角之间最小欧式距离,忽略小于此距离的点
Corners:输出检测角点的一个向量值
Mask:感兴趣的区域
blockSize:检测窗口的大小
userHarrisDetector:是否使用Harris算法,默认值为false,不使用Harris算法
K:默认值为0.04


4.代码实战

import os
import cv2
import numpy as np#读取图片
img=cv2.imread('images/HaLiSi.jpg')
#缩放图片
img=cv2.resize(src=img,dsize=(450,450))
#转灰度图
gray=cv2.cvtColor(src=img,code=cv2.COLOR_RGB2GRAY)
tomasiCorners=cv2.goodFeaturesToTrack(image=gray,maxCorners=1000,qualityLevel=0.01,minDistance=10)
#转换为整形
tomasiCorners=np.int0(tomasiCorners)
#遍历所有的角点
for corner in tomasiCorners:#获取角点的坐标x,y=corner.ravel()cv2.circle(img=img,center=(x,y),radius=3,color=(0,255,0),thickness=-1)#显示图像
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()if __name__ == '__main__':print('Pycharm')

在这里插入图片描述

这篇关于Shi-Tomasi角点检测(python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/483298

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco