RE2文本匹配调优实战

2023-12-11 21:20
文章标签 实战 匹配 文本 调优 re2

本文主要是介绍RE2文本匹配调优实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在RE2文本匹配实战的最后,博主说过会结合词向量以及其他技巧来对效果进行调优,本篇文章对整个过程进行详细记录。其他文本匹配系列实战后续也会进行类似的调优,方法是一样的,不再赘述。

本文所用到的词向量可以在Gensim训练中文词向量实战文末找到,免费提供下载。

完整代码在文末。

数据准备

本次用的是LCQMC通用领域问题匹配数据集,它已经分好了训练、验证和测试集。

我们通过pandas来加载一下。

import pandas as pdtrain_df = pd.read_csv(data_path.format("train"), sep="\t", header=None, names=["sentence1", "sentence2", "label"])train_df.head()

image-20230903075315567

数据是长这样子的,有两个待匹配的句子,标签是它们是否相似。

下面用jieba来处理每个句子。

def tokenize(sentence):return list(jieba.cut(sentence))train_df.sentence1 = train_df.sentence1.apply(tokenize)
train_df.sentence2 = train_df.sentence2.apply(tokenize)

image-20230903075752210

得到分好词的数据后,我们就可以得到整个训练语料库中的所有token:

train_sentences = train_df.sentence1.to_list() + train_df.sentence2.to_list()
train_sentences[0]
['喜欢', '打篮球', '的', '男生', '喜欢', '什么样', '的', '女生']

现在就可以来构建词表了,我们沿用之前的代码:

class Vocabulary:"""Class to process text and extract vocabulary for mapping"""def __init__(self, token_to_idx: dict = None, tokens: list[str] = None) -> None:"""Args:token_to_idx (dict, optional): a pre-existing map of tokens to indices. Defaults to None.tokens (list[str], optional): a list of unique tokens with no duplicates. Defaults to None."""assert any([tokens, token_to_idx]), "At least one of these parameters should be set as not None."if token_to_idx:self._token_to_idx = token_to_idxelse:self._token_to_idx = {}if PAD_TOKEN not in tokens:tokens = [PAD_TOKEN] + tokensfor idx, token in enumerate(tokens):self._token_to_idx[token] = idxself._idx_to_token = {idx: token for token, idx in self._token_to_idx.items()}self.unk_index = self._token_to_idx[UNK_TOKEN]self.pad_index = self._token_to_idx[PAD_TOKEN]@classmethoddef build(cls,sentences: list[list[str]],min_freq: int = 2,reserved_tokens: list[str] = None,) -> "Vocabulary":"""Construct the Vocabulary from sentencesArgs:sentences (list[list[str]]): a list of tokenized sequencesmin_freq (int, optional): the minimum word frequency to be saved. Defaults to 2.reserved_tokens (list[str], optional): the reserved tokens to add into the Vocabulary. Defaults to None.Returns:Vocabulary: a Vocubulary instane"""token_freqs = defaultdict(int)for sentence in tqdm(sentences):for token in sentence:token_freqs[token] += 1unique_tokens = (reserved_tokens if reserved_tokens else []) + [UNK_TOKEN]unique_tokens += [tokenfor token, freq in token_freqs.items()if freq >= min_freq and token != UNK_TOKEN]return cls(tokens=unique_tokens)def __len__(self) -> int:return len(self._idx_to_token)def __iter__(self):for idx, token in self._idx_to_token.items():yield idx, tokendef __getitem__(self, tokens: list[str] | str) -> list[int] | int:"""Retrieve the indices associated with the tokens or the index with the single tokenArgs:tokens (list[str] | str): a list of tokens or single tokenReturns:list[int] | int: the indices or the single index"""if not isinstance(tokens, (list, tuple)):return self._token_to_idx.get(tokens, self.unk_index)return [self.__getitem__(token) for token in tokens]def lookup_token(self, indices: list[int] | int) -> list[str] | str:"""Retrive the tokens associated with the indices or the token with the single indexArgs:indices (list[int] | int): a list of index or single indexReturns:list[str] | str: the corresponding tokens (or token)"""if not isinstance(indices, (list, tuple)):return self._idx_to_token[indices]return [self._idx_to_token[index] for index in indices]def to_serializable(self) -> dict:"""Returns a dictionary that can be serialized"""return {"token_to_idx": self._token_to_idx}@classmethoddef from_serializable(cls, contents: dict) -> "Vocabulary":"""Instantiates the Vocabulary from a serialized dictionaryArgs:contents (dict): a dictionary generated by `to_serializable`Returns:Vocabulary: the Vocabulary instance"""return cls(**contents)def __repr__(self):return f"<Vocabulary(size={len(self)})>"

主要修改是增加:

def __iter__(self):for idx, token in self._idx_to_token.items():yield idx, token

使得这个词表是可迭代的,其他代码参考完整代码。

模型实现

模型实现见RE2文本匹配实战,没有任何修改。

模型训练

主要优化在模型训练过程中,首先我们训练得更久——总epochs数设成50,同时我们引入早停策略,当模型不再优化则无需继续训练。

早停策略

class EarlyStopper:def __init__(self, patience: int = 5, mode: str = "min") -> None:self.patience = patienceself.counter = 0self.best_value = 0.0if mode not in {"min", "max"}:raise ValueError(f"mode {mode} is unknown!")self.mode = modedef step(self, value: float) -> bool:if self.is_better(value):self.best_value = valueself.counter = 0else:self.counter += 1if self.counter >= self.patience:return Truereturn Falsedef is_better(self, a: float) -> bool:if self.mode == "min":return a < self.best_valuereturn a > self.best_value

很简单,如果调用step()返回True,则触发了早停;通过best_value保存训练过程中的最佳指标,同时技术清零;其中patience表示最多忍耐模型不再优化次数;

学习率调度

当模型不再收敛时,还可以尝试减少学习率。这里引入的ReduceLROnPlateau就可以完成这件事。

lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", factor=0.85, patience=0)for epoch in range(args.num_epochs):train(train_data_loader, model, criterion, optimizer, args.grad_clipping)acc, p, r, f1 = evaluate(dev_data_loader, model)# 当准确率不再下降,则降低学习率lr_scheduler.step(acc)

增加梯度裁剪值

梯度才才裁剪值增加到10.0

载入预训练词向量

最重要的就是载入预训练词向量了:

def load_embedings(vocab, embedding_path: str, embedding_dim: int = 300, lower: bool = True
) -> list[list[float]]:word2vec = KeyedVectors.load_word2vec_format(embedding_path)embedding = np.random.randn(len(vocab), embedding_dim)load_count = 0for i, word in vocab:if lower:word = word.lower()if word in word2vec:embedding[i] = word2vec[word]load_count += 1print(f"loaded word count: {load_count}")return embedding.tolist()

首先加载word2vec文件;接着随机初始化一个词表大小的词向量;然后遍历(见上文)词表中的标记,如果标记出现在word2vec中,则使用word2vec的嵌入,并且计数加1;最后打印出工加载的标记数。

设定随机种子

def set_random_seed(seed: int = 666) -> None:np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed_all(seed)

为了让结果可复现,还实现了设定随机种子, 本文用的是 set_random_seed(seed=47),最终能达到测试集上84.6%的准确率,实验过程中碰到了85.0%的准确率,但没有复现。

训练

训练参数:

Arguments : Namespace(dataset_csv='text_matching/data/lcqmc/{}.txt', vectorizer_file='vectorizer.json', model_state_file='model.pth', pandas_file='dataframe.{}.pkl', save_dir='/home/yjw/workspace/nlp-in-action-public/text_matching/re2/model_storage', reload_model=False, cuda=True, learning_rate=0.0005, batch_size=128, num_epochs=50, max_len=50, embedding_dim=300, hidden_size=150, encoder_layers=2, num_blocks=2, kernel_sizes=[3], dropout=0.2, min_freq=2, project_func='linear', grad_clipping=10.0, num_classes=2)

主要训练代码:

train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True
)
dev_data_loader = DataLoader(dev_dataset, batch_size=args.batch_size)
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size)optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
criterion = nn.CrossEntropyLoss()lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", factor=0.85, patience=0)best_value = 0.0early_stopper = EarlyStopper(mode="max")for epoch in range(args.num_epochs):train(train_data_loader, model, criterion, optimizer, args.grad_clipping)acc, p, r, f1 = evaluate(dev_data_loader, model)lr_scheduler.step(acc)if acc > best_value:best_value = accprint(f"Save model with best acc :{acc:4f}")torch.save(model.state_dict(), model_save_path)if early_stopper.step(acc):print(f"Stop from early stopping.")breakacc, p, r, f1 = evaluate(dev_data_loader, model)print(f"EVALUATE [{epoch+1}/{args.num_epochs}]  accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}")model.eval()acc, p, r, f1 = evaluate(test_data_loader, model)
print(f"TEST accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}")model.load_state_dict(torch.load(model_save_path))
model.to(device)
acc, p, r, f1 = evaluate(test_data_loader, model)
print(f"TEST[best score] accuracy={acc:.3f} precision={p:.3f} recal={r:.3f} f1 score={f1:.4f}"
)

输出:

Arguments : Namespace(dataset_csv='text_matching/data/lcqmc/{}.txt', vectorizer_file='vectorizer.json', model_state_file='model.pth', pandas_file='dataframe.{}.pkl', save_dir='/home/yjw/workspace/nlp-in-action-public/text_matching/re2/model_storage', reload_model=False, cuda=True, learning_rate=0.0005, batch_size=128, num_epochs=50, max_len=50, embedding_dim=300, hidden_size=150, encoder_layers=2, num_blocks=2, kernel_sizes=[3], dropout=0.2, min_freq=2, project_func='linear', grad_clipping=10.0, num_classes=2)
Using device: cuda:0.
Loads cached dataframes.
Loads vectorizer file.
set_count: 4789
Model: RE2((embedding): Embedding((embedding): Embedding(4827, 300, padding_idx=0)(dropout): Dropout(p=0.2, inplace=False))(connection): AugmentedResidualConnection()(blocks): ModuleList((0): ModuleDict((encoder): Encoder((encoders): ModuleList((0): Conv1d((model): ModuleList((0): Sequential((0): Conv1d(300, 150, kernel_size=(3,), stride=(1,), padding=(1,))(1): GeLU())))(1): Conv1d((model): ModuleList((0): Sequential((0): Conv1d(150, 150, kernel_size=(3,), stride=(1,), padding=(1,))(1): GeLU()))))(dropout): Dropout(p=0.2, inplace=False))(alignment): Alignment((projection): Sequential((0): Dropout(p=0.2, inplace=False)(1): Linear((model): Sequential((0): Linear(in_features=450, out_features=150, bias=True)(1): GeLU()))))(fusion): Fusion((dropout): Dropout(p=0.2, inplace=False)(fusion1): Linear((model): Sequential((0): Linear(in_features=900, out_features=150, bias=True)(1): GeLU()))(fusion2): Linear((model): Sequential((0): Linear(in_features=900, out_features=150, bias=True)(1): GeLU()))(fusion3): Linear((model): Sequential((0): Linear(in_features=900, out_features=150, bias=True)(1): GeLU()))(fusion): Linear((model): Sequential((0): Linear(in_features=450, out_features=150, bias=True)(1): GeLU()))))(1): ModuleDict((encoder): Encoder((encoders): ModuleList((0): Conv1d((model): ModuleList((0): Sequential((0): Conv1d(450, 150, kernel_size=(3,), stride=(1,), padding=(1,))(1): GeLU())))(1): Conv1d((model): ModuleList((0): Sequential((0): Conv1d(150, 150, kernel_size=(3,), stride=(1,), padding=(1,))(1): GeLU()))))(dropout): Dropout(p=0.2, inplace=False))(alignment): Alignment((projection): Sequential((0): Dropout(p=0.2, inplace=False)(1): Linear((model): Sequential((0): Linear(in_features=600, out_features=150, bias=True)(1): GeLU()))))(fusion): Fusion((dropout): Dropout(p=0.2, inplace=False)(fusion1): Linear((model): Sequential((0): Linear(in_features=1200, out_features=150, bias=True)(1): GeLU()))(fusion2): Linear((model): Sequential((0): Linear(in_features=1200, out_features=150, bias=True)(1): GeLU()))(fusion3): Linear((model): Sequential((0): Linear(in_features=1200, out_features=150, bias=True)(1): GeLU()))(fusion): Linear((model): Sequential((0): Linear(in_features=450, out_features=150, bias=True)(1): GeLU())))))(pooling): Pooling()(prediction): Prediction((dense): Sequential((0): Dropout(p=0.2, inplace=False)(1): Linear((model): Sequential((0): Linear(in_features=600, out_features=150, bias=True)(1): GeLU()))(2): Dropout(p=0.2, inplace=False)(3): Linear((model): Sequential((0): Linear(in_features=150, out_features=2, bias=True)(1): GeLU()))))
)
New modelTRAIN iter=1866 loss=0.436723: 100%|██████████| 1866/1866 [01:55<00:00, 16.17it/s]
100%|██████████| 69/69 [00:01<00:00, 40.39it/s]
Save model with best accuracy :0.771302
EVALUATE [2/50]  accuracy=0.771 precision=0.800 recal=0.723 f1 score=0.7598TRAIN iter=1866 loss=0.403501: 100%|██████████| 1866/1866 [01:57<00:00, 15.93it/s]
100%|██████████| 69/69 [00:01<00:00, 45.32it/s]
Save model with best accuracy :0.779709
EVALUATE [3/50]  accuracy=0.780 precision=0.785 recal=0.770 f1 score=0.7777TRAIN iter=1866 loss=0.392297: 100%|██████████| 1866/1866 [01:45<00:00, 17.64it/s]
100%|██████████| 69/69 [00:01<00:00, 43.32it/s]
Save model with best accuracy :0.810838
EVALUATE [4/50]  accuracy=0.811 precision=0.804 recal=0.822 f1 score=0.8130TRAIN iter=1866 loss=0.383858: 100%|██████████| 1866/1866 [01:46<00:00, 17.52it/s]
100%|██████████| 69/69 [00:01<00:00, 42.72it/s]
EVALUATE [5/50]  accuracy=0.810 precision=0.807 recal=0.816 f1 score=0.8113TRAIN iter=1866 loss=0.374672: 100%|██████████| 1866/1866 [01:46<00:00, 17.55it/s]
100%|██████████| 69/69 [00:01<00:00, 44.62it/s]
Save model with best accuracy :0.816746
EVALUATE [6/50]  accuracy=0.817 precision=0.818 recal=0.815 f1 score=0.8164TRAIN iter=1866 loss=0.369444: 100%|██████████| 1866/1866 [01:46<00:00, 17.52it/s]
100%|██████████| 69/69 [00:01<00:00, 45.27it/s]
EVALUATE [7/50]  accuracy=0.815 precision=0.800 recal=0.842 f1 score=0.8203TRAIN iter=1866 loss=0.361552: 100%|██████████| 1866/1866 [01:47<00:00, 17.39it/s]
100%|██████████| 69/69 [00:01<00:00, 42.68it/s]
Save model with best accuracy :0.824926
EVALUATE [8/50]  accuracy=0.825 precision=0.820 recal=0.832 f1 score=0.8262TRAIN iter=1866 loss=0.358231: 100%|██████████| 1866/1866 [01:50<00:00, 16.95it/s]
100%|██████████| 69/69 [00:01<00:00, 42.80it/s]
Save model with best accuracy :0.827312
EVALUATE [9/50]  accuracy=0.827 precision=0.841 recal=0.808 f1 score=0.8239TRAIN iter=1866 loss=0.354693: 100%|██████████| 1866/1866 [01:55<00:00, 16.19it/s]
100%|██████████| 69/69 [00:01<00:00, 36.67it/s]
Save model with best accuracy :0.830607
EVALUATE [10/50]  accuracy=0.831 precision=0.818 recal=0.851 f1 score=0.8340TRAIN iter=1866 loss=0.351138: 100%|██████████| 1866/1866 [02:02<00:00, 15.23it/s]
100%|██████████| 69/69 [00:02<00:00, 32.18it/s]
Save model with best accuracy :0.837991
EVALUATE [11/50]  accuracy=0.838 precision=0.840 recal=0.836 f1 score=0.8376TRAIN iter=1866 loss=0.348067: 100%|██████████| 1866/1866 [01:52<00:00, 16.57it/s]
100%|██████████| 69/69 [00:01<00:00, 42.16it/s]
EVALUATE [12/50]  accuracy=0.836 precision=0.836 recal=0.837 f1 score=0.8365TRAIN iter=1866 loss=0.343886: 100%|██████████| 1866/1866 [02:09<00:00, 14.43it/s]
100%|██████████| 69/69 [00:02<00:00, 32.44it/s]
Save model with best accuracy :0.839127
EVALUATE [13/50]  accuracy=0.839 precision=0.838 recal=0.841 f1 score=0.8395TRAIN iter=1866 loss=0.341275: 100%|██████████| 1866/1866 [02:17<00:00, 13.60it/s]
100%|██████████| 69/69 [00:02<00:00, 32.74it/s]
Save model with best accuracy :0.842649
EVALUATE [14/50]  accuracy=0.843 precision=0.841 recal=0.845 f1 score=0.8431TRAIN iter=1866 loss=0.339279: 100%|██████████| 1866/1866 [02:15<00:00, 13.74it/s]
100%|██████████| 69/69 [00:01<00:00, 42.64it/s]
Save model with best accuracy :0.846399
EVALUATE [15/50]  accuracy=0.846 precision=0.858 recal=0.831 f1 score=0.8440TRAIN iter=1866 loss=0.338046: 100%|██████████| 1866/1866 [01:49<00:00, 17.00it/s]
100%|██████████| 69/69 [00:01<00:00, 42.64it/s]
EVALUATE [16/50]  accuracy=0.844 precision=0.844 recal=0.843 f1 score=0.8436TRAIN iter=1866 loss=0.334223: 100%|██████████| 1866/1866 [01:59<00:00, 15.60it/s]
100%|██████████| 69/69 [00:02<00:00, 32.00it/s]
EVALUATE [17/50]  accuracy=0.844 precision=0.836 recal=0.855 f1 score=0.8455TRAIN iter=1866 loss=0.331690: 100%|██████████| 1866/1866 [02:04<00:00, 15.01it/s]
100%|██████████| 69/69 [00:01<00:00, 42.16it/s]
EVALUATE [18/50]  accuracy=0.844 precision=0.834 recal=0.860 f1 score=0.8465TRAIN iter=1866 loss=0.328178: 100%|██████████| 1866/1866 [01:49<00:00, 16.98it/s]
100%|██████████| 69/69 [00:01<00:00, 42.50it/s]
EVALUATE [19/50]  accuracy=0.845 precision=0.842 recal=0.849 f1 score=0.8454TRAIN iter=1866 loss=0.326720: 100%|██████████| 1866/1866 [01:48<00:00, 17.12it/s]
100%|██████████| 69/69 [00:01<00:00, 41.95it/s]
Save model with best accuracy :0.847421
EVALUATE [20/50]  accuracy=0.847 precision=0.844 recal=0.853 f1 score=0.8482TRAIN iter=1866 loss=0.324938: 100%|██████████| 1866/1866 [01:49<00:00, 16.99it/s]
100%|██████████| 69/69 [00:01<00:00, 43.29it/s]
EVALUATE [21/50]  accuracy=0.845 precision=0.842 recal=0.848 f1 score=0.8452TRAIN iter=1866 loss=0.322923: 100%|██████████| 1866/1866 [01:48<00:00, 17.24it/s]
100%|██████████| 69/69 [00:01<00:00, 43.47it/s]
EVALUATE [22/50]  accuracy=0.847 precision=0.844 recal=0.852 f1 score=0.8480TRAIN iter=1866 loss=0.322150: 100%|██████████| 1866/1866 [01:46<00:00, 17.51it/s]
100%|██████████| 69/69 [00:01<00:00, 42.77it/s]
Save model with best accuracy :0.849920
EVALUATE [23/50]  accuracy=0.850 precision=0.839 recal=0.866 f1 score=0.8523TRAIN iter=1866 loss=0.320312: 100%|██████████| 1866/1866 [01:49<00:00, 17.06it/s]
100%|██████████| 69/69 [00:01<00:00, 41.91it/s]
EVALUATE [24/50]  accuracy=0.847 precision=0.843 recal=0.853 f1 score=0.8479TRAIN iter=1866 loss=0.319144: 100%|██████████| 1866/1866 [01:49<00:00, 17.00it/s]
100%|██████████| 69/69 [00:01<00:00, 42.76it/s]
EVALUATE [25/50]  accuracy=0.849 precision=0.841 recal=0.861 f1 score=0.8511TRAIN iter=1866 loss=0.318375: 100%|██████████| 1866/1866 [01:48<00:00, 17.20it/s]
100%|██████████| 69/69 [00:01<00:00, 43.52it/s]
EVALUATE [26/50]  accuracy=0.850 precision=0.843 recal=0.859 f1 score=0.8512TRAIN iter=1866 loss=0.317125: 100%|██████████| 1866/1866 [01:48<00:00, 17.17it/s]
100%|██████████| 69/69 [00:01<00:00, 42.54it/s]
EVALUATE [27/50]  accuracy=0.848 precision=0.841 recal=0.857 f1 score=0.8490TRAIN iter=1866 loss=0.316708: 100%|██████████| 1866/1866 [01:49<00:00, 17.03it/s]
100%|██████████| 69/69 [00:01<00:00, 42.04it/s]
Stop from early stopping.
100%|██████████| 98/98 [00:02<00:00, 38.74it/s]
TEST accuracy=0.846 precision=0.792 recal=0.938 f1 score=0.8587
100%|██████████| 98/98 [00:02<00:00, 39.47it/s]
TEST[best f1] accuracy=0.846 precision=0.793 recal=0.939 f1 score=0.8594

一些结论

  • 采用字向量而不是词向量,经实验比较自训练的词向量和字向量,后者效果更好;

  • 有38个标记没有被word2vec词向量覆盖;

  • 准确率达到84.6;

  • 超过了网上常见的84.0;

  • 训练了近30轮;

  • 词向量word2vec仅训练了5轮,未调参,显然不是最优的,但也够用;

  • RE2模型应该还能继续优化,但没必要花太多时间调参;

从RE2模型开始,后续就进入预训练模型,像Sentence-BERT、SimCSE等。

但在此之前,计划先巩固下预训练模型的知识,因此文本匹配系列暂时不更新,等预训练模型更新差不多之后再更新。

完整代码

https://github.com/nlp-greyfoss/nlp-in-action-public/tree/master/text_matching/re2

这篇关于RE2文本匹配调优实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/482144

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1