MiniGUI 定时器分析

2023-12-11 06:32
文章标签 分析 定时器 minigui

本文主要是介绍MiniGUI 定时器分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MiniGUI 定时器分析 (注:该MiniGUI库版本为1.6.10 非LITE版本)

MiniGUI几个定时器相关的函数如下:

BOOL GUIAPI ResetTimerEx(HWND hWnd, int id, unsigned int speed, TIMERPROC timer_proc);

BOOL GUIAPI SetTimerEx(HWND hWnd, int id, unsigned int speed, TIMERPROC timer_proc);

#define SetTimer(hwnd, id, speed) SetTimerEx(hwnd, id, speed, NULL)

#define ResetTimer(hwnd, id, speed) ResetTimerEx(hwnd, id, speed, (TIMERPROC)0xFFFFFFFF)

hWnd为创建定时器时传入的窗口句柄。

id 为定时器id号

speed 为定时器时间间隔10ms 为单位。

timer_proc 为定时器回调函数

MiniGUI定时器内部运行原理

src/kernel/init.c 文件下InitGUI函数是在MiniGUI程序初始化的时候被调用的。

int GUIAPI InitGUI (int args, const char *agr[])

{

。。。

  SystemThreads()

。。。

}

InitGUI函数中调用SystemThreads函数

SystemThreads函数中创建了DesktopMain线程。

pthread_create (&__mg_desktop, NULL, DesktopMain, &wait);函数

void* DesktopMain (void* data)

{

    MSG Msg;

。。。

    while (GetMessage(&Msg, HWND_DESKTOP)) {

        int iRet = 0;

        iRet = DesktopWinProc (HWND_DESKTOP, Msg.message, Msg.wParam, Msg.lParam);

。。。      

    }

    return NULL;

}

可以看到在这里MiniGUI创建了一个桌面线程用于处理桌面线程消息。

int DesktopWinProc (HWND hWnd, int message, WPARAM wParam, LPARAM lParam)

{

case MSG_TIMER:      // per 0.01s

        {

            static UINT uCounter = 0;

            DispatchTimerMessage (1);

            if (__mg_timer_counter % 10 != 0)

                break;

            uCounter += 100;

         }

        break;

}

在这里可以看到桌面窗口回调函数对MSG_TIMER消息的处理。调用了DispatchTimerMessage (1);函数。

timerstr该结构体数组里面最大可以放DEF_NR_TIMERS这么多个定时器,轮询每个定时器检查时间是否超时,如超时则设置定时器时间到标志,让PeekMessageEx函数做处理。

void DispatchTimerMessage (unsigned int inter)

{

    int i;

    TIMER_LOCK ();

    for (i=0; i<DEF_NR_TIMERS; i++) {

        if (timerstr[i] && timerstr[i]->msg_queue) {

            timerstr[i]->count += inter;

            if (timerstr[i]->count >= timerstr[i]->speed) {

                if (timerstr[i]->tick_count == 0)

                    timerstr[i]->tick_count = __mg_timer_counter;

                SetMsgQueueTimerFlag (timerstr[i]->msg_queue, i);

                

                timerstr[i]->count -= timerstr[i]->speed;

            }

        }

    }

    TIMER_UNLOCK ();

}

SetMsgQueueTimerFlag 函数中调用了POST_MSGQ (pMsgQueue);

static inline void

SetMsgQueueTimerFlag (PMSGQUEUE pMsgQueue, int slot)

{

    pMsgQueue->TimerMask |= (0x01 << slot);

    POST_MSGQ (pMsgQueue);  //该宏的作用是将窗口消息循环由阻塞状态唤醒。

}

此时创建该定时器的窗口过程中的消息循环PeekMessageEx会被唤醒。

BOOL PeekMessageEx (PMSG pMsg, HWND hWnd, int iMsgFilterMin, int iMsgFilterMax, 

                          BOOL bWait, UINT uRemoveMsg)

{

。。。

      if ((timer = __mg_get_timer (slot))) {

            unsigned int tick_count = timer->tick_count;

            timer->tick_count = 0;

            pMsgQueue->TimerMask &= ~(0x01 << slot);

            if (timer->proc) { //如果该定时器定义回调函数

                BOOL ret_timer_proc;

                UNLOCK_MSGQ (pMsgQueue);

                ret_timer_proc = timer->proc (timer->hWnd,  timer->id, tick_count);

                LOCK_MSGQ (pMsgQueue);

                if (!ret_timer_proc) {

                    __mg_remove_timer (timer, slot);

                }

            }

            else { 

//如果该函数回调函数指针为空则转成消息放入消息队列等着DispatchMessage函数处理

                pMsg->message = MSG_TIMER;

                pMsg->hwnd = timer->hWnd;

                pMsg->wParam = timer->id;

                pMsg->lParam = tick_count;

                SET_PADD (NULL);

                UNLOCK_MSGQ (pMsgQueue);

                return TRUE;

            }

        }

。。。

}

SystemThreads函数中调用__mg_timer_init函数,该函数又启动了 TimerEntry 线程。

int __mg_timer_init (void)

{

    sem_t wait;

    sem_init (&wait, 0, 0);

    pthread_create (&__mg_timer, NULL, TimerEntry, &wait);

    sem_wait (&wait);

    sem_destroy (&wait);

    return 0;

}

TimerEntry 线程调用了_os_timer_loop 时间循环函数

static void* TimerEntry (void* data)

{

    if (!InitTimer ()) {

        fprintf (stderr, "TIMER: Init Timer failure, exit!\n");

        return NULL;

    }

    sem_post ((sem_t*)data);

    _os_timer_loop ();

    return NULL;

}

时间循环函数如下

static inline void _os_timer_loop (void)

{

    while (1) {

        __mg_os_time_delay (10);  //延时10ms

        __mg_timer_action (NULL);      //每10ms调用一次

    }

}

每10ms AlertDesktopTimerEvent 函数被调用

static void __mg_timer_action (void *data)

{

    __mg_timer_counter ++;

    AlertDesktopTimerEvent ();

}

每10ms 由AlertDesktopTimerEvent 给桌面消息循环设置时间到标志,如该循环阻塞,则唤醒该循环。

AlertDesktopTimerEvent (void)

{

    __mg_dsk_msg_queue->TimerMask = 1;

    POST_MSGQ(__mg_dsk_msg_queue);

}


这篇关于MiniGUI 定时器分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/479763

相关文章

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专