d1-nezha-rtthread与rtthread的cv1800b反汇编文件分析,及测试是否进入os.bin

2023-12-11 01:44

本文主要是介绍d1-nezha-rtthread与rtthread的cv1800b反汇编文件分析,及测试是否进入os.bin,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

(1)PLCT实验室实习生长期招聘:招聘信息链接
(2)因为根据教程,我一直Milkv-duortthread一直没有进展,据我所知,一般只有entry函数前面部分有差异,然后是entry—>rtthread_startup—>rt_hw_board_init函数中系统时钟配置内容不同。然后调整一下FlashSRAM即可。
(3)因为第一次做操作系统的移植工作,因此只能走一步看一步了。我先对比研究一下d1-nezha-rtthreadrtthreadcv1800b反汇编文件。大概分析一下我的问题到底出现在哪里再尝试开始一步一步的做测试工作。
(4)阅读本文前,请先看:
<1>生成fip.bin在Milkv-duo上跑rtthread的相关尝试,及其问题分析;
<2>如何自己生成fip.bin在Milkv-duo上跑freertos;

研究反汇编

前期准备

(1)首先,我们先准备好d1-nezha-rtthreadrtthreadcv1800b反汇编文件。

rtthread反汇编文件生成

(1)这里的PATH=路径是你交叉编译工具链的路径。

export PATH=/opt/riscv64-linux-musleabi_for_x86_64-pc-linux-gnu/bin:$PATH
riscv64-unknown-elf-objdump -d rtthread.elf > rtthread_disassembly.txt

d1-nezha-rtthread反汇编文件生成

riscv64-unknown-elf-objdump -d rtthread.elf > d1s_disassembly.txt

反汇编对比分析

d1-nezha-rtthread反汇编分析

(1)d1-nezha-rtthread的反汇编非常好研究,极其简单。

  • _start前期工作,可能包括设置特定的控制寄存器(CSRs),关闭机器级中断,生成相对地址,并将生成的地址存储在寄存器 t0 中。
  • trap_entry,应该是设置中断处理入口地址为t0,初始化栈指针。
  • clear_bss,清除bss。
  • entry,之后的内容一致。

在这里插入图片描述

rtthread反汇编分析

(1)RT-Thread的反汇编就略微的复杂一点点
<1>首先是跳转到g_wake_up函数中。

  • boot_hartid,应该是对中断的相关寄存器进行配置。
  • trap_entry,清空ra到t0这32个寄存器。
  • __global_pointer,应该是栈分配吧。
  • init_bss,清除bss,这部分RT-Thread仓库和D1S仓库对bss操作不一样。
  • sbi_initRT-Thread仓库中有这个函数,但是D1S仓库中没有进行这个函数调用。

在这里插入图片描述
在这里插入图片描述

<2>g_wake_up函数执行完成之后,会跳转到primary_cpu_entry中执行。

  • rt_hw_interrupt_disable,关闭了全局中断。
  • __rt_assert_handler,应该是进行一些检查和断言吧。
  • rt_assert_set_hook,进行一些寄存器值的保存和加载,并且与栈操作相关。
  • entry,之后的内容一致。

在这里插入图片描述

测试是否进入了rtos.bin

找到第一个执行文件

(1)既然知道问题所在了,对启动流程有了一个初步认识之后,那么我们是不是可以在进入rtos.bin之前加一个打印信息呢?

在这里插入图片描述

(2)既然有了这个想法,那么就马上开干。我们知道_start中会调用trap_entry__stack_cpu0clear_bssentry这几个函数。于是我们可以尝试使用grep命令,查看这几个函数分别在哪几个文件中出现。

grep -r "trap_entry"
grep -r "__stack_cpu0"
grep -r "clear_bss"
grep -r "entry"

(3)通过查找的信息,我们很明显可以知道,大概率是在_start大概率是在startup_gcc.c或者是startup_gcc.S中出现。

在这里插入图片描述

(4)此时我们需要移动到仓库的根目录。然后执行如下查找指令,就可以找到startup_gcc.S文件。

cd ../..
find -name "startup_gcc.*"

在这里插入图片描述

修改文件内容

(1)这里我们需要将如何自己生成fip.bin在Milkv-duo上跑freertos这篇博客修改好的串口驱动程序移植过来。
(2)因为我这边反正是做测试使用,就大胆的把串口驱动文件放在了存放RT-Thread内核源码的src目录下了。这样就不会出现找不到文件的情况,减少麻烦。

在这里插入图片描述

(3)这里我们就在drv_uart中加入一个打印的测试函数print_zyx

/* --- drv_uart.h --- */
void print_zyx(void);
/* --- drv_uart.c --- */
void print_zyx(void)
{dw8250_uart_init();dw8250_uart_putc('z');dw8250_uart_putc('y');dw8250_uart_putc('x');
}

在这里插入图片描述
在这里插入图片描述

(4)在libcpu/risc-v/c906/startup_gcc.S中调整

_start:jal print_zyx/*disable interrupt*/csrw mie, zero

在这里插入图片描述

(4)在bsp/d1-nezha中编译,然后使用grep命令查找print_zyx是否被编译进来。

scons -c
scons -j10
grep -r "print_zyx"

在这里插入图片描述

生成fip.bin

(1)执行如下命令,生成fip.bin,生成的fip.bin在build目录下。

# d1-nezha-rtthread仓库中
cd  ${d1-nezha-rtthread_DIR}/bsp/d1-nezha
cp rtthread.bin rtos.bin
mv rtos.bin ${duo-toolbox_DIR}/debugloader/duoRVOS
# 进入duo-toolbox仓库路径
cd ${duo-toolbox_DIR}/debugloader/
export PATH=`pwd`/../host-tools/gcc/riscv64-linux-musl-x86_64/bin:$PATH
export PATH=`pwd`/../host-tools/gcc/riscv64-elf-x86_64/bin:$PATH
cd duoRVOS/
make clean
make
cd ../../fip/
cp ../debugloader/duoRVOS/os.bin .
make fsbl-build

(2)最终会出现一个乱码,具体原因不清楚。

在这里插入图片描述

(3)为了确保print_zyx是否编译进入了os.bin,我们可以看看os.asm文件,找到payload_bin。我们能够发现csrw mie,zero指令前面有一个jal的跳转指令,说明是成功将print_zyx是否编译进入了os.bin。至于为什么会出现乱码打印,还在研究中。

在这里插入图片描述

参考文章

(1)面包板社区:教你动手移植RT-Thread到国产MCU
(2)C站:生成fip.bin在Milkv-duo上跑rtthread的相关尝试,及其问题分析;
(3)C站:如何自己生成fip.bin在Milkv-duo上跑freertos;

这篇关于d1-nezha-rtthread与rtthread的cv1800b反汇编文件分析,及测试是否进入os.bin的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/479017

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号